AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025420426
REVIEW ARTICLE

Precision hydrogel environments for advanced microbial culture and patterning

Jeremy Elias1 Catherine Klein2 Benjamin Wu1 Xuesong He3 Jirun Sun1*
Show Less
1 Department of Mineralized Tissue Biology, ADA Forsyth Institute, Somerville, Massachusetts, USA
2 Center for Regenerative Medicine, Institute of Science and Innovation in Medicine, Faculty of Medicine, Clínica Alemana CAS–UDD, University of Development, Santiago, Chile
3 Department of Microbiology, ADA Forsyth Institute, Somerville, Massachusetts, USA
Received: 16 October 2025 | Accepted: 20 November 2025 | Published online: 26 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hydrogel materials and scaffolds have emerged as transformative tools in biological research by offering precise control over cell viability, metabolism, and productivity. Their compatibility with three-dimensional (3D) bioprinting and patterning technologies enables the precise and reproducible organization of living components, facilitating novel experimental paradigms across diverse disciplines. Although most 3D hydrogel research has emphasized mammalian cell applications, particularly in tissue engineering, there is a growing body of research applying these technologies to study, manipulate, and harness a variety of microorganisms, such as bacteria. This review explores the latest advances in microbial hydrogel encapsulation, focusing on material selection and patterning methods designed to preserve microbial viability and function. We compare the distinct requirements and challenges of culturing microorganisms in hydrogels versus mammalian systems and highlight recent breakthroughs in bacterial bioprinting that are advancing microbiological research, paving the way for current and emerging applications in various areas, including oral health. By synthesizing current knowledge and identifying promising future directions, this review underscores the potential of microbial hydrogel culture as a versatile platform for investigating microbial communities, probing bacterial– material interactions, and engineering living materials with applications in human health and environmental systems.

Graphical abstract
Keywords
Bacteria–material interaction
Bacterial bioprinting
Microbial hydrogel culture
Microbial living materials
Three-dimensional bioprinting
Funding
This work was funded by the National Institute of Dental and Craniofacial Research (Nos. R01DE029479A and DE029479S). Financial support was also provided through the ADA Forsyth Institute (Grant No. AFISU105).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Pascalie J, Potier M, Kowaliw T, et al. Developmental design of synthetic bacterial architectures by morphogenetic engineering. ACS Synth Biol. 2016;5(8):842-861. doi:10.1021/acssynbio.5b00246
  2. Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 2008;26(9):483-489. doi:10.1016/j.tibtech.2008.05.004
  3. Gajic I, Kabic J, Kekic D, et al. Antimicrobial susceptibility testing: a comprehensive review of currently used methods. Antibiotics. 2022;11(4):427. doi:10.3390/antibiotics11040427
  4. Prindle A, Selimkhanov J, Li H, Razinkov I, Tsimring LS, Hasty J. Rapid and tunable post-translational coupling of genetic circuits. Nature. 2014;508(7496):387-391. doi:10.1038/nature13238
  5. Sulaeva I, Henniges U, Rosenau T, Potthast A. Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv. 2015;33(8):1547-1571. doi:10.1016/j.biotechadv.2015.07.009
  6. McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 2019;37(2):181-197. doi:10.1016/j.tibtech.2018.11.002
  7. Sreepadmanabh M, Ganesh M, Sanjenbam P, Kurzthaler C, Agashe D, Bhattacharjee T. Cell shape affects bacterial colony growth under physical confinement. Nat Commun. 2024;15(1):9561. doi:10.1038/s41467-024-53989-6
  8. Wells M, Schneider R, Bhattarai B, et al. Perspective: the viscoelastic properties of biofilm infections and mechanical interactions with phagocytic immune cells. Front Cell Infect Microbiol. 2023;13. doi:10.3389/fcimb.2023.1102199
  9. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA. Nonlinear elasticity in biological gels. Nature. 2005;435(7039):191-194. doi:10.1038/nature03521
  10. Lazarus E, Meyer AS, Ikuma K, Rivero IV. Three dimensional printed biofilms: fabrication, design and future biomedical and environmental applications. Microb Biotechnol. 2024;17(1):e14360. doi:10.1111/1751-7915.14360
  11. Denton O, Wan Y, Beattie L, et al. Understanding the role of biofilms in acute recurrent tonsillitis through 3D bioprinting of a novel gelatin-PEGDA hydrogel. Bioengineering. 2024;11(3):202. doi:10.3390/bioengineering11030202
  12. Ning E, Turnbull G, Clarke J, et al. 3D bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing. Biofabrication. 2019;11(4):045018. doi:10.1088/1758-5090/ab37a0
  13. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet Lond Engl. 2001;358(9276): 135-138. doi:10.1016/s0140-6736(01)05321-1
  14. Paré G, Kitsiou S. Chapter 9 methods for literature reviews. In: Handbook of eHealth Evaluation: An Evidence-Based Approach [Internet]. Victoria (BC): University of Victoria; 2017. https://www.ncbi.nlm.nih.gov/books/NBK481583/. Accessed August 22, 2025.
  15. Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. Bioinks and bioprinting: a focused review. Bioprinting. 2020;18:e00080. doi:10.1016/j.bprint.2020.e00080
  16. Farasati Far B, Safaei M, Nahavandi R, et al. Hydrogel encapsulation techniques and its clinical applications in drug delivery and regenerative medicine: a systematic review. ACS Omega. 2024;9(27):29139-29158. doi:10.1021/acsomega.3c10102
  17. Theus AS, Ning L, Hwang B, et al. Bioprintability: physiomechanical and biological requirements of materials for 3D bioprinting processes. Polymers. 2020; 12(10):2262. doi:10.3390/polym12102262
  18. Zhang Y, Zhou D, Chen J, et al. Biomaterials based on marine resources for 3D bioprinting applications. Mar Drugs. 2019;17(10):555. doi:10.3390/md17100555
  19. Hwang CM, Sant S, Masaeli M, et al. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication. 2010;2(3):035003. doi:10.1088/1758-5082/2/3/035003
  20. Ng WL, Vyas C, Huang B, Yeong WY, Bartolo P. Advanced bioprinting strategies for fabrication of biomimetic tissues and organs. Int J Extreme Manuf. 2025;7(6):062006. doi:10.1088/2631-7990/adeee0
  21. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.00776
  22. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217-239. doi:10.1016/j.biotechadv.2016.12.006
  23. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi:10.1088/1758-5090/8/3/032002
  24. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi:10.1002/anbr.202000097
  25. González LM, Mukhitov N, Voigt CA. Resilient living materials built by printing bacterial spores. Nat Chem Biol. 2020;16(2):126-133. doi:10.1038/s41589-019-0412-5
  26. Qian F, Zhu C, Knipe JM, et al. Direct writing of tunable living inks for bioprocess intensification. Nano Lett. 2019;19(9):5829-5835. doi:10.1021/acs.nanolett.9b00066
  27. Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng. 2024;47(4):443-461. doi:10.1007/s00449-023-02965-3
  28. Aghlara-Fotovat S, Musteata E, Doerfert MD, et al. Hydrogel-encapsulation to enhance bacterial diagnosis of colon inflammation. Biomaterials. 2023;301:122246. doi:10.1016/j.biomaterials.2023.122246
  29. Barreiros dos Santos M, Azevedo S, Agusil JP, et al. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry. 2015;101:146-152. doi:10.1016/j.bioelechem.2014.09.002
  30. Balasubramanian S, Aubin-Tam ME, Meyer AS. 3D printing for the fabrication of biofilm-based functional living materials. ACS Synth Biol. 2019;8(7):1564-1567. doi:10.1021/acssynbio.9b00192
  31. Schmieden DT, Basalo Vázquez SJ, Sangüesa H, van der Does M, Idema T, Meyer AS. Printing of patterned, engineered E. coli biofilms with a low-cost 3D Printer. ACS Synth Biol. 2018;7(5):1328-1337. doi:10.1021/acssynbio.7b00424
  32. Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials. 2009;30(20):3371-3377. doi:10.1016/j.biomaterials.2009.03.030
  33. Yeh M kung, Liang Y ming, Cheng K ming, Dai NT, Liu C che, Young J jong. A novel cell support membrane for skin tissue engineering: gelatin film cross-linked with 2-chloro-1-methylpyridinium iodide. Polymer. 2011;52(4): 996-1003. doi:10.1016/j.polymer.2010.10.060
  34. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi:10.1016/j.biomaterials.2015.10.076
  35. Utoiu E, Manoiu VS, Oprita EI, Craciunescu O. Bacterial cellulose: a sustainable source for hydrogels and 3D-printed scaffolds for tissue engineering. Gels. 2024;10(6):387. doi:10.3390/gels10060387
  36. Purcell EK, Singh A, Kipke DR. Alginate composition effects on a neural stem cell–seeded scaffold. Tissue Eng Part C Methods. 2009;15(4):541-550. doi:10.1089/ten.tec.2008.0302
  37. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6(8):623-633. doi:10.1002/mabi.200600069
  38. Hellio D, Djabourov M. Physically and chemically crosslinked gelatin gels. Macromol Symp. 2006;241(1): 23-27. doi:10.1002/masy.200650904
  39. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863-1887. doi:10.3390/ma3031863
  40. Yin N, Santos TMA, Auer GK, Crooks JA, Oliver PM, Weibel DB. Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol. 2014;80(6): 1926-1932. doi:10.1128/AEM.03452-13
  41. Pu X, Wu Y, Liu J, Wu B. 3D bioprinting of microbial-based living materials for advanced energy and environmental applications. Chem Bio Eng. 2024;1(7):568-592. doi:10.1021/cbe.4c00024
  42. Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering. 2021;8(2):27. doi:10.3390/bioengineering8020027
  43. Zhang H, Xia H, Zhao Y. Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 2012;1(11):1233-1236. doi:10.1021/mz300451r
  44. Rovetta R, Pallavicini A, Ginestra PS. Bioprinting process optimization: case study on PVA (polyvinyl alcohol) and graphene oxide biocompatible hydrogels. Procedia CIRP. 2022;110:145-149. doi:10.1016/j.procir.2022.06.027
  45. Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631-643. doi:10.1007/s11095-008-9801-2
  46. Kadilak AL, Rehaag JC, Harrington CA, Shor LM. A 3D-printed microbial cell culture platform with in situ PEGDA hydrogel barriers for differential substrate delivery. Biomicrofluidics. 2017;11(5):054109. doi:10.1063/1.5003477
  47. Gong CY, Shi S, Dong PW, et al. In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(ε- caprolactone)-poly(ethylene glycol) copolymer. BMC Biotechnol. 2009;9:8. doi:10.1186/1472-6750-9-8
  48. Vashi AV, Keramidaris E, Abberton KM, et al. Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials. 2008;29(5):573-579. doi:10.1016/j.biomaterials.2007.10.017
  49. Lee SH, Lee Y, Lee SW, et al. Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomater. 2011;7(4):1468-1476. doi:10.1016/j.actbio.2010.11.029
  50. Vandenhaute M, Schelfhout J, Van Vlierberghe S, Mendes E, Dubruel P. Cross-linkable, thermo-responsive Pluronic® building blocks for biomedical applications: synthesis and physico-chemical evaluation. Eur Polym J. 2014;53: 126-138. doi:10.1016/j.eurpolymj.2014.01.016
  51. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi:10.1039/C7BM00765E
  52. Qamar SA, Riasat A, Jahangeer M, et al. Prospects of microbial polysaccharides-based hybrid constructs for biomimicking applications. J Basic Microbiol. 2022;62(11):1319-1336. doi:10.1002/jobm.202100596
  53. Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66-84. doi:10.1016/j.carbpol.2018.01.060
  54. Tomić SL, Babić Radić MM, Vuković JS, Filipović VV, Nikodinovic-Runic J, Vukomanović M. Alginate-based hydrogels and scaffolds for biomedical applications. Mar Drugs. 2023;21(3):177. doi:10.3390/md21030177
  55. Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprinting. 2020;6(3):270. doi:10.18063/ijb.v6i3.270
  56. Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep. 2021;11(1): 23276. doi:10.1038/s41598-021-02830-x
  57. Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics. 2022;14(9):1978. doi:10.3390/pharmaceutics14091978
  58. Sanz-Horta R, Matesanz A, Gallardo A, et al. Technological advances in fibrin for tissue engineering. J Tissue Eng. 2023;14:20417314231190288. doi:10.1177/20417314231190288
  59. Trucco D, Sharma A, Manferdini C, et al. Modeling and fabrication of silk fibroin–gelatin-based constructs using extrusion-based three-dimensional bioprinting. ACS Biomater Sci Eng. 2021;7(7):3306-3320. doi:10.1021/acsbiomaterials.1c00410
  60. Pescosolido L, Schuurman W, Malda J, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules. 2011;12(5):1831-1838. doi:10.1021/bm200178w
  61. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi:10.1016/j.mtbio.2019.100008
  62. Kandemir N, Vollmer W, Jakubovics NS, Chen J. Mechanical interactions between bacteria and hydrogels. Sci Rep. 2018;8(1):10893. doi:10.1038/s41598-018-29269-x
  63. Burczak K, Fujisato T, Hatada M, Ikada Y. Protein permeation through poly(vinyl alcohol) hydrogel membranes. Biomaterials. 1994;15(3):231-238. doi:10.1016/0142-9612(94)90072-8
  64. Cai MH, Chen XY, Fu LQ, et al. Design and development of hybrid hydrogels for biomedical applications: recent trends in anticancer drug delivery and tissue engineering. Front Bioeng Biotechnol. 2021;9. doi:10.3389/fbioe.2021.630943
  65. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126. doi:10.1016/j.progpolymsci.2011.06.003
  66. Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C. 2017;70: 842-855. doi:10.1016/j.msec.2016.09.081
  67. Chueh B han, Zheng Y, Torisawa Y Suke, et al. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed Microdevices. 2010;12(1):145-151. doi:10.1007/s10544-009-9369-6
  68. Fisch P, Broguiere N, Finkielsztein S, Linder T, Zenobi- Wong M. Bioprinting of cartilaginous auricular constructs utilizing an enzymatically crosslinkable bioink. Adv Funct Mater. 2021;31(16):2008261. doi:10.1002/adfm.202008261
  69. Gupta A, Avci P, Dai T, Huang YY, Hamblin MR. Ultraviolet radiation in wound care: sterilization and stimulation. Adv Wound Care. 2013;2(8):422-437. doi:10.1089/wound.2012.0366
  70. Hu J, Hou Y, Park H, et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater. 2012;8(5):1730-1738. doi:10.1016/j.actbio.2012.01.029
  71. Pereira RF, Bártolo PJ. 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci. 2015;132(48). doi:10.1002/app.42458
  72. Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi:10.1016/j.slast.2023.02.003
  73. Nair DP, Podgórski M, Chatani S, et al. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater. 2014;26(1):724-744. doi:10.1021/cm402180t
  74. Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem. 2011;22(10):1946-1953. doi:10.1021/bc200148v
  75. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C. 2018;83:195-201. doi:10.1016/j.msec.2017.09.002
  76. Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin– alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. 2018;10(3):034106. doi:10.1088/1758-5090/aacdc7
  77. Sun JY, Zhao X, Illeperuma WRK, et al. Highly stretchable and tough hydrogels. Nature. 2012;489(7414):133-136. doi:10.1038/nature11409
  78. Hernandez JL, Woodrow KA. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Adv Healthc Mater. 2022;11(9):e2102087. doi:10.1002/adhm.202102087
  79. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13-22. doi:10.1038/nnano.2010.246
  80. De France KJ, Xu F, Hoare T. Structured macroporous hydrogels: progress, challenges, and opportunities. Adv Healthc Mater. 2018;7(1). doi:10.1002/adhm.201700927
  81. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485-502. doi:10.1089/ten.teb.2012.0437
  82. Kim J, Yaszemski MJ, Lu L. Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens. Tissue Eng Part C Methods. 2009;15(4):583-594. doi:10.1089/ten.tec.2008.0642
  83. Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol. 2011;22(5):661-666. doi:10.1016/j.copbio.2011.04.005
  84. Aldemir Dikici B, Claeyssens F. Basic principles of emulsion templating and its use as an emerging manufacturing method of tissue engineering scaffolds. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.00875
  85. Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4): 371-383. doi:10.1089/ten.teb.2009.0639
  86. Lau HK, Paul A, Sidhu I, et al. Microstructured elastomer-PEG hydrogels via kinetic capture of aqueous liquid–liquid phase separation. Adv Sci. 2018;5(6): 1701010. doi:10.1002/advs.201701010
  87. Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous hydrogels: present challenges and future opportunities. Langmuir. 2023;39(6):2092-2111. doi:10.1021/acs.langmuir.2c02253
  88. Dong PT, Shi W, He X, Borisy GG. Adhesive interactions within microbial consortia can be differentiated at the single-cell level through expansion microscopy. Proc Natl Acad Sci USA. 2024;121(48):e2411617121. doi:10.1073/pnas.2411617121
  89. Lim Y, Shiver AL, Khariton M, et al. Mechanically resolved imaging of bacteria using expansion microscopy. PLOS Biol. 2019;17(10):e3000268. doi:10.1371/journal.pbio.3000268
  90. Johnston TG, Yuan SF, Wagner JM, et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat Commun. 2020;11(1):563. doi:10.1038/s41467-020-14371-4
  91. Jin GZ, Kim HW. Effects of type I collagen concentration in hydrogel on the growth and phenotypic expression of rat chondrocytes. Tissue Eng Regen Med. 2017;14(4): 383-391. doi:10.1007/s13770-017-0060-3
  92. Yeh J, Ling Y, Karp JM, et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials. 2006;27(31):5391-5398. doi:10.1016/j.biomaterials.2006.06.005
  93. Occhetta P, Sadr N, Piraino F, Redaelli A, Moretti M, Rasponi M. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication. 2013;5(3):035002. doi:10.1088/1758-5082/5/3/035002
  94. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23(23):4437-4447. doi:10.1016/S0142-9612(02)00139-4
  95. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primer. 2021;1(1):1-20. doi:10.1038/s43586-021-00073-8
  96. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi:10.1126/sciadv.1500758
  97. Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the granular gel medium. Sci Adv. 2015;1(8):e1500655. doi:10.1126/sciadv.1500655
  98. Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14(13):2202-2211. doi:10.1039/C4LC00030G
  99. Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6(1):34845. doi:10.1038/srep34845
  100. Liu T, Liu Q, Anaya I, et al. Investigating lymphangiogenesis in a sacrificially bioprinted volumetric model of breast tumor tissue. Methods. 2021;190:72-79. doi:10.1016/j.ymeth.2020.04.003
  101. Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768-774. doi:10.1038/nmat3357
  102. Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater. 2011;23(24):H178-H183. doi:10.1002/adma.201004625
  103. Liu W, Zhong Z, Hu N, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication. 2018;10(2):024102. doi:10.1088/1758-5090/aa9d44
  104. Ouyang L, Highley CB, Sun W, Burdick JA. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo‐crosslinkable Inks. Adv Mater. 2017;29(8): 1604983. doi:10.1002/adma.201604983
  105. Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep. 2019;9(1):19987. doi:10.1038/s41598-019-56117-3
  106. Barui S. 3D inkjet printing of biomaterials: principles and applications. Med Devices Sens. 2021;4(1):e10143. doi:10.1002/mds3.10143
  107. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi:10.1021/acs.chemrev.0c00008
  108. Nieto D, Marchal Corrales JA, Jorge de Mora A, Moroni L. Fundamentals of light-cell–polymer interactions in photo-cross-linking based bioprinting. APL Bioeng. 2020;4(4):041502. doi:10.1063/5.0022693
  109. Manapat JZ, Chen Q, Ye P, Advincula RC. 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng. 2017;302(9):1600553. doi:10.1002/mame.201600553
  110. Stampfl J, Baudis S, Heller C, et al. Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J Micromech Microeng. 2008;18(12):125014. doi:10.1088/0960-1317/18/12/125014
  111. Peng X, Kuang X, Roach DJ, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit Manuf. 2021;40:101911. doi:10.1016/j.addma.2021.101911
  112. Connell JL, Kim J, Shear JB, Bard AJ, Whiteley M. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc Natl Acad Sci USA. 2014;111(51):18255-18260. doi:10.1073/pnas.1421211111
  113. Müller J, Jäkel AC, Richter J, Eder M, Falgenhauer E, Simmel FC. Bacterial growth, communication, and guided chemotaxis in 3D-bioprinted hydrogel environments. ACS Appl Mater Interfaces. 2022;14(14):15871-15880. doi:10.1021/acsami.1c20836
  114. Ceballos-González CF, Bolívar-Monsalve EJ, Quevedo- Moreno DA, et al. High-throughput and continuous chaotic bioprinting of spatially controlled bacterial microcosms. ACS Biomater Sci Eng. 2021;7(6):2408-2419. doi:10.1021/acsbiomaterials.0c01646
  115. Yusupov VI, Gorlenko MV, Cheptsov VS, et al. Laser engineering of microbial systems. Laser Phys Lett. 2018;15(6):065604. doi:10.1088/1612-202X/aab5ef
  116. Reinhardt O, Ihmann S, Ahlhelm M, Gelinsky M. 3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials. Front Bioeng Biotechnol. 2023;11. doi:10.3389/fbioe.2023.1145177
  117. Binelli MR, Kan A, Rozas LEA, Pisaturo G, Prakash N, Studart AR. Complex living materials made by light‐based printing of genetically programmed bacteria. Adv Mater. 2023;35(6):2207483. doi:10.1002/adma.202207483
  118. Mohammadi Z, Rabbani M. Bacterial bioprinting on a flexible substrate for fabrication of a colorimetric temperature indicator by using a commercial inkjet printer. J Med Signals Sens. 2018;8(3):170-174. doi:10.4103/jmss.JMSS_41_17
  119. Dubbin K, Dong Z, Park DM, et al. Projection microstereolithographic microbial bioprinting for engineered biofilms. Nano Lett. 2021;21(3):1352-1359. doi:10.1021/acs.nanolett.0c04100
  120. Balasubramanian S, Yu K, Cardenas DV, Aubin-Tam ME, Meyer AS. Emergent biological endurance depends on extracellular matrix composition of three-dimensionally printed Escherichia coli biofilms. ACS Synth Biol. 2021;10(11):2997-3008. doi:10.1021/acssynbio.1c00290
  121. Jiang M, Zheng J, Tang Y, et al. Retrievable hydrogel networks with confined microalgae for efficient antibiotic degradation and enhanced stress tolerance. Nat Commun. 2025;16(1). doi:10.1038/s41467-025-58415-z
  122. He F, Ou Y, Liu J, et al. 3D Printed biocatalytic living materials with dual‐network reinforced bioinks. Small. 2022;18(6). doi:10.1002/smll.202104820
  123. Wang D, Li X yan, Li A. Natural bioink of interpenetrating network hydrogels mimicking extracellular polymeric substances for microbial immobilization in water pollution control. Environ Res. 2024;262:119856. doi:10.1016/j.envres.2024.119856
  124. Datta D, Weiss EL, Wangpraseurt D, et al. Phenotypically complex living materials containing engineered cyanobacteria. Nat Commun. 2023;14(1). doi:10.1038/s41467-023-40265-2
  125. Lehner BAE, Schmieden DT, Meyer AS. A straightforward approach for 3D bacterial printing. ACS Synth Biol. 2017;6(7):1124-1130. doi:10.1021/acssynbio.6b00395
  126. Ming Z, Han L, Bao M, et al. Living bacterial hydrogels for accelerated infected wound healing. Adv Sci. 2021;8(24):2102545. doi:10.1002/advs.202102545
  127. Huang J, Liu S, Zhang C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat Chem Biol. 2019;15(1):34-41. doi:10.1038/s41589-018-0169-2
  128. Schaffner M, Rühs PA, Coulter F, Kilcher S, Studart AR. 3D printing of bacteria into functional complex materials. Sci Adv. 2017;3(12):eaao6804. doi:10.1126/sciadv.aao6804
  129. Molinari S, Tesoriero RF, Li D, et al. A de novo matrix for macroscopic living materials from bacteria. Nat Commun. 2022;13(1):5544. doi:10.1038/s41467-022-33191-2
  130. Chen AY, Deng Z, Billings AN, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater. 2014;13(5):515-523. doi:10.1038/nmat3912
  131. Freyman MC, Kou T, Wang S, Li Y. 3D printing of living bacteria electrode. Nano Res. 2020;13(5):1318-1323. doi:10.1007/s12274-019-2534-1
  132. Pham JV, Yilma MA, Feliz A, et al. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.01404
  133. Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. Biotechnol Biofuels Bioprod. 2024;17(1):115. doi:10.1186/s13068-024-02546-w
  134. da Silva TL, Gouveia L, Reis A. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol. 2014;98(3):1043-1053. doi:10.1007/s00253-013-5389-5
  135. Nikita S, Mishra S, Gupta K, Runkana V, Gomes J, Rathore AS. Advances in bioreactor control for production of biotherapeutic products. Biotechnol Bioeng. 2023;120(5):1189-1214. doi:10.1002/bit.28346
  136. Smith MJ, Francis MB. Improving metabolite production in microbial co-cultures using a spatially constrained hydrogel. Biotechnol Bioeng. 2017;114(6):1195-1200. doi:10.1002/bit.26235
  137. Duraj-Thatte AM, Manjula-Basavanna A, Rutledge J, et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat Commun. 2021;12(1):6600. doi:10.1038/s41467-021-26791-x
  138. Cui Z, Feng Y, Liu F, Jiang L, Yue J. 3D bioprinting of living materials for structure-dependent production of hyaluronic acid. ACS Macro Lett. 2022;11(4):452-459. doi:10.1021/acsmacrolett.2c00037
  139. Sharma S, Pathania S, Bhagta S, et al. Microbial remediation of polluted environment by using recombinant E. coli: a review. Biotechnol Environ. 2024;1(1). doi:10.1186/s44314-024-00008-z
  140. Zhang Y, Hsu HH, Wheeler JJ, Tang S, Jiang X. Emerging investigator series: emerging biotechnologies in wastewater treatment: from biomolecular engineering to multiscale integration. Environ Sci Water Res Technol. 2020;6(8):1967-1985. doi:10.1039/D0EW00393J
  141. Justus KB, Hellebrekers T, Lewis DD, et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot. 2019;4(31):eaax0765. doi:10.1126/scirobotics.aax0765
  142. Gilbert C, Tang TC, Ott W, et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater. 2021;20(5):691-700. doi:10.1038/s41563-020-00857-5
  143. Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol. 2006;60:131-147. doi:10.1146/annurev.micro.60.080805.142106
  144. Liu X, Yuk H, Lin S, et al. 3D printing of living responsive materials and devices. Adv Mater. 2018;30(4):1704821. doi:10.1002/adma.201704821
  145. Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic biology for multiscale designed biomimetic assemblies: from designed self-assembling biopolymers to bacterial bioprinting. Biochemistry. 2019;58(16):2095-2104. doi:10.1021/acs.biochem.8b00922
  146. Zheng DW, Qiao JY, Ma JC, et al. A microbial community cultured in gradient hydrogel for investigating gut microbiome-drug interaction and guiding therapeutic decisions. Adv Mater. 2023;35(22):2300977. doi:10.1002/adma.202300977
  147. Aliyazdi S, Frisch S, Hidalgo A, et al. 3D bioprinting of E. coli MG1655 biofilms on human lung epithelial cells for building complex in vitro infection models. Biofabrication. 2023;15(3):035019. doi:10.1088/1758-5090/acd95e
  148. Darch SE, Simoska O, Fitzpatrick M, et al. Spatial determinants of quorum signaling in a pseudomonas aeruginosa infection model. Proc Natl Acad Sci USA. 2018;115(18):4779-4784. doi:10.1073/pnas.1719317115
  149. Connell JL, Ritschdorff ET, Whiteley M, Shear JB. 3D printing of microscopic bacterial communities. Proc Natl Acad Sci USA. 2013;110(46):18380-18385. doi:10.1073/pnas.1309729110
  150. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB. Probing prokaryotic social behaviors with bacterial “Lobster Traps.” mBio. 2010;1(4):e00202-10. doi:10.1128/mBio.00202-10
  151. Aftab M, Ikram S, Ullah M, et al. Recent trends and future directions in 3D printing of biocompatible polymers. J Manuf Mater Process. 2025;9(4). doi:10.3390/jmmp9040129
  152. Ma X, Xu M, Cui X, Yin J, Wu Q. Hybrid 3D bioprinting of sustainable biomaterials for advanced multiscale tissue engineering. Small Weinh Bergstr Ger. Published online March 27, 2025:e2408947. doi:10.1002/smll.202408947
  153. Zhang TC, Bishop PL. Density, porosity, and pore structure of biofilms. Water Res. 1994;28(11):2267-2277. doi:10.1016/0043-1354(94)90042-6

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing