AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025380391
RESEARCH ARTICLE

Three-dimensional-printed bionic dual crosslinked drug-loaded hydrogel composite scaffolds for large bone defect repair  

Xulin Hu1,2†* Zhen Zhang3† Lijin Ning4† Yixuan Lan1 Wang Gong1 Jiayu Liu1 Shuhao Yang5 Haoming Wu1 Weiming Zhao1 Jian He6 Kainan Li1* Weizong Weng7,8*
Show Less
1 Department of Orthopedics, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
2 Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3 Department of Chemistry, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan, China
4 Department of Dentistry, School of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China.
5 Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
6 Department of Basic Medicine, Faculty of Medicine, Henan University of Science and Technology, Luoyang, Henan, China
7 Department of Orthopaedics, Chenggong Hospital, Xiamen University, Xiamen, Fujian, China
8 Department of Orthopedics, Institute of Translational Medicine, Shanghai University, Shanghai, China
†These authors contributed equally to this work.
Received: 21 September 2025 | Accepted: 12 November 2025 | Published online: 14 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The structure, composition, and function of natural bone have long been the focus of bone tissue engineering. However, existing organic–inorganic three-dimensional (3D) printing systems are limited by the stability of hydrogels and the content of inorganic salts, hindering the fabrication of robust 3D scaffolds. In this study, we developed a hydrogel–inorganic particle bioink and implemented a multi-step crosslinking strategy. The organic phase, composed of sodium alginate, gelatin, and chitosan, was combined with β-tricalcium phosphate and crosslinked via ionic pre-crosslinking followed by a Schiff base reaction to form a dual-crosslinked network. The resulting scaffolds exhibited excellent mechanical properties and biomimetic microarchitecture while maintaining shape stability under physiological conditions. Furthermore, the tunable swelling behavior of the hydrogel enabled efficient loading and controlled release of the small molecule epigallocatechin gallate. This composite scaffold demonstrated adjustable swelling, controllable degradation, and significantly enhanced cellular compatibility, providing a novel, efficient, and scalable strategy for repairing complex bone defects and offering new insights for the design and application of 3D-printed bone scaffolds.

Graphical abstract
Keywords
β-tricalcium phosphate
Bionic tissue structure
Hydrogel base
Three-dimensional printing
Funding
This study was supported by the National Science Foundation of China (NSFC, #82402822, 82202674), the Central Government of Sichuan through the Special Project of Local Science and Technology Development (#2024ZYD0155), the Health Commission of Sichuan Province Medical Science and Technology Program (#24QNMP036), and the Natural Science Foundation of Xiamen, China (3502Z20227124).
Conflict of interest
Xulin Hu serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Wang Y, Zhang H, Hu Y, Jing Y, Geng Z, Su J. Bone repair biomaterials: a perspective from immunomodulation. Adv Funct Mater. 2022;32(51):2208639. doi: 10.1002/adfm.202208639
  2. Batra P, Das S, Jain S. Correlation of radiovisuographic analysis of interdental and interradicular bone loss in furcation involvement of mandibular first molars: a retrospective study. Indian J Dent Res. 2018;29(3):329-332. doi: 10.4103/ijdr.IJDR_52_16. PMID: 29900917
  3. Chang HY, Park SY, Kim JA, Kim YK, Lee HJ. Early radiographic diagnosis of peri-implantitis enhances the outcome of peri-implantitis treatment: a 5-year retrospective study after non-surgical treatment. J Periodontal Implant Sci. 2015;45(3):82-93. doi: 10.5051/jpis.2015.45.3.82
  4. Kironde E, Sekimpi P, Kajja I, Mubiri P. Prevalence and patterns of traumatic bone loss following open long bone fractures at Mulago Hospital. OTA Int. 2019.2(1): e015-e015. doi: 10.1097/OI9.0000000000000015
  5. Puisys A, Auzbikaviciute V, Minkauskaite A, et al. Early crestal bone loss: is it really loss? Clin Case Rep. 2019;7(10):1913-1915. doi: 10.1002/ccr3.2376
  6. Zhou H, Liang B, Jiang H, Deng Z, Yu K. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J Magnes Alloy. 2021;9(3):779-804. doi: 10.1016/j.jma.2021.03.004
  7. Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos Part B Eng. 2021;215:108790. doi: 10.1016/j.compositesb.2021.108790
  8. Feng P, Zhao R Y, Tang W M, et al. Structural and functional adaptive artificial bone: materials, fabrications, and properties. Adv Funct Mater. 2023;33(23):2214726. doi: 10.1002/adfm.202214726
  9. Nissen FI, Andreasen C, Borgen TT, Bjørnerem Å, Hansen AK. Cortical bone structure of the proximal femur and incident fractures. Bone. 2022;155:116284. doi: 10.1016/j.bone.2021.116284
  10. Rodriguez-Palomo A, Ostergaard M, Birkedal H. Bone hierarchical structure: heterogeneity and uniformity. Adv Funct Mater. 2023;34(35):2307026. doi: 10.1002/adfm.202307026
  11. Zhou C, Zhang XL, Ai J, et al. Chiral hierarchical structure of bone minerals. Nano Res. 2022;15(2):1295-1302. doi: 10.1007/s12274-021-3653-z
  12. Yusof F, Sha’ban M, Azhim A. Decellularization strategies to engineer fibrocartilage bioscaffolds: a review. J Biomater Tissue Eng. 2021;11(8):1435-1451. doi: 10.1166/jbt.2021.2740
  13. He J, Fang J, Wei P, et al. Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomater. 2021;121:665-681. doi: 10.1016/j.actbio.2020.11.032
  14. Yoon SJ, Kim SH, Choi JW, Chun HJ, Yang DH. Guided cortical and cancellous bone formation using a minimally invasive technique of BMSC- and BMP-2-laden visible light-cured carboxymethyl chitosan hydrogels. Int J Biol Macromol. 2023;227:641-653. doi: 10.1016/j.ijbiomac.2022.12.13
  15. Zhao ZY, Li G, Ruan HT, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021;15(8):13041-130540. doi: 10.1021/acsnano.1c02147
  16. Hu X, Lin Z, He J, et al. Recent progress in 3D printing degradable polylactic acid‐based bone repair scaffold for the application of cancellous bone defect. MedComm Biomater Appl. 2022;1(1):e14. doi: 10.1002/mba2.14
  17. Riggs C, Goodship A. Bone structure and function. Fractures in the Horse. 2022:11-27. doi: 10.1002/9781119431749.ch2
  18. Li C, Du YW, Zhang TT, et al. “Genetic scissors” CRISPR/ Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact Mater. 2023;22:254-273. doi: 10.1016/j.bioactmat.2022.09.026
  19. Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w
  20. Seidi A, Ramalingam M. Engineering of gradient biomaterials as biomimetic systems for tissue engineering. J Biomater Tissue Eng. 2011;1(2):139-148. doi: 10.1166/jbt.2011.1020
  21. Li J, Chen Q, Zhang Q, et al. Improving mechanical properties and biocompatibilities by highly oriented long chain branching poly(lactic acid) with bionic surface structures. ACS Appl Mater Interfaces. 2020;12(12): 14365-14375. doi: 10.1021/acsami.9b20264
  22. Qi T, Zhang X, Gu X, Cui S. Experimental study on repairing peripheral nerve defects with novel bionic tissue engineering. Adv Healthc Mater. 2023;12(17):e2203199. doi: 10.1002/adhm.202203199
  23. Wang Y, Jiang X, Li X, et al. Bionic ordered structured hydrogels: structure types, design strategies, optimization mechanism of mechanical properties and applications. Mater Horiz. 2023;10(10):4033-4058. doi: 10.1039/d3mh00326d
  24. Wang L, Li AF, Zhang D, et al. Injectable double-network hydrogel for corneal repair. Chem Eng J. 2023;455:140698. doi: 10.1016/j.cej.2022.140698.
  25. Zhu WX, Zhou Z, Huang YT, et al. A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair. J Mater Sci Technol. 2023;136:200-211. doi: 10.1016/j.jmst.2022.07.010
  26. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105-121. doi: 10.1016/j.jare.2013.07.006
  27. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126. doi: 10.1016/j.progpolymsci.2011.06.003
  28. Liang YP, He JH, Guo BL. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15(8):12687-12722. doi: 10.1021/acsnano.1c04206
  29. Correa CS, Grosskopf AK, Hernandez HL, Chan D, Appel EA. Translational applications of hydrogels. Chem Rev. 2021;121(18):11385-11457. doi: 10.1021/acs.chemrev.0c01177
  30. Nie R, Sun Y, Lv H, et al. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale. 2022;14(22):8112-8129. doi: 10.1039/D2NR02176E
  31. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double‐network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15(14):1155-1158. doi: 10.1002/adma.200304907
  32. Aldana AA, Houben S, Moroni L, Baker MB, Pitet LM. Trends in double networks as bioprintable and injectable hydrogel scaffolds for tissue regeneration. ACS Biomater Sci Eng. 2021;7(9):4077-4101. doi: 10.1021/acsbiomaterials.0c01749
  33. Xu X, Jerca VV, Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater Horiz. 2021;8(4):1173-1188. doi: 10.1039/d0mh01514h
  34. Yang J, Li K, Tang C, et al. Recent progress in double network elastomers: one plus one is greater than two. Adv Funct Mater. 2022;32(19):2110244. doi: 10.1002/adfm.202110244
  35. Gao N, Zhang Y, Yang Z, et al. Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chin Chem Lett. 2023;35(5):108820. doi: 10.1016/j.cclet.2023.108820
  36. Zhang A, Wang F, Chen L, et al. 3D printing hydrogels for actuators: a review. Chin Chem Lett. 2021;32(10):2923-2932. doi: 10.1016/j.cclet.2021.03.073
  37. Wang Y, Jiao Y, Zeng Z, Chang J, Yang C, Dong Z. Three‐dimensional printed Zn2SiO4/sodium alginate composite scaffold with multiple biological functions for tendon‐to‐bone repair. MedComm Biomater Appl. 2023;2(4):e61. doi: 10.1002/mba2.61
  38. Kankariya Y, Chatterjee B. Biomedical application of chitosan and chitosan derivatives: a comprehensive review. Curr Pharm Des. 2023;29(17):1311-1325. doi: 10.2174/1381612829666230524153002
  39. Manna S, Seth A, Gupta P, et al. Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomater Sci Eng. 2023;9(5):2181-2202. doi: 10.1007/978-981-15-0263-7
  40. Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic gelation of chitosan flat structures and potential applications. Molecules. 2021;26(3):660. doi: 10.3390/molecules26030660
  41. Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules. 2021;26(23):7136. doi: 10.3390/molecules26237136
  42. Xulin H, Hu L, Liang Q, et al. 369Fabrication of 3D gel-printed β-tricalcium phosphate/titanium dioxide porous scaffolds for cancellous bone tissue engineering. Int J Bioprint. 2023;9(2):673. Published 2023 Jan 19. doi: 10.18063/ijb.v9i2.673
  43. Peres I, Rocha S, do Carmo Pereira M, Coelho M, Rangel M, Ivanova G. NMR structural analysis of epigallocatechin gallate loaded polysaccharide nanoparticles. Carbohydr Polym. 2010;82(3):861-866. doi: 10.1016/j.carbpol.2010.06.007
  44. Zhang S, Mao B, Cui S, et al. Absorption, metabolism, bioactivity, and biotransformation of epigallocatechin gallate. Crit Rev Food Sci Nutr. 2024;64(19):6546-6566. doi: 10.1080/10408398.2023.2170972
  45. Guo Z, Liu W, Liu T, et al. Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chin Chem Lett. 2023;35(7):109060. doi: 10.1016/j.cclet.2023.109060
  46. Baranwal A, Aggarwal P, Rai A, Kumar N. Pharmacological actions and underlying mechanisms of catechin: a review. Mini Rev Med Chem. 2022;22(5):821-833. doi: 10.2174/1389557521666210902162120
  47. Cabezas Perez RJ, Ávila Rodríguez MF, Rosero Salazar DH. Exogenous antioxidants in remyelination and skeletal muscle recovery. Biomedicines. 2022;10(10):2557. doi: 10.3390/biomedicines10102557
  48. Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918-1929. doi: 10.1038/nprot.2012.113
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing