AI-enhanced magnetically controlled 4D printing: Reshaping the future of medical robotics
As a frontier interdisciplinary breakthrough, magnetically controlled 4D printing integrates smart materials, additive manufacturing, and magnetic actuation, and is offering more improvements for healthcare practices. By introducing time as the fourth dimension, magnetic 4D-printed devices can dynamically transform their structure and function in response to physiological or external magnetic stimuli, enabling minimally invasive interventions with enhanced adaptability and precision. Integrating AI into magnetically controlled 4D printing accelerates material discovery, optimizes design and manufacturing, and enables intelligent navigation and control in complex in vivo environments. Recent advances highlight promising applications in interventional therapy, targeted drug delivery, and tissue repair, yet challenges remain in achieving biocompatible multifunctional materials, scalable fabrication, and safe clinical translation. Looking ahead, synergistic integration of AI with multimodal actuation, digital twins, and biomimetic systems may unlock unprecedented opportunities for personalized, adaptive, and intelligent medical robots. This perspective outlines current progress, key challenges, and future directions of AI-enhanced magnetically controlled 4D printing, underscoring its transformative potential in redefining next-generation medical robotics.
