A 3D-bioprinted alginate-MgP scaffold for superior regeneration of calvarial bone defects in a rat model

While autologous transplants are the traditional standard intervention for non-healing bone defect regeneration, they carry many risks and limitations. Regenerative composite biomaterials are promising alternatives to conventional autograft and allograft implants. This study aimed to overcome these challenges by creating a novel biodegradable 3D biomaterial scaffold that mimics the structural and physiological properties of native bone. Scaffolds composed of magnesium phosphate (MgP) doped with copper oxide (CuO) in specific proportions (3, 5, or 7% [w/w]) were homogenously distributed in an alginate polymer matrix for the repair of calvarial bone defects in a rat model. The scaffolds were fabricated using a 3D bioprinting technique, and their physical properties were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical strength assessments. The bioactivity of the scaffolds was evaluated in vitro for biomineralization and cytotoxicity, revealing high biomineralization and cell viability. Female rats were used for the in vivo experiments, and the defects were examined using microscopic and histological analysis, computed tomography imaging, as well as serum markers including osteocalcin and procollagen III. The in vivo results demonstrated high efficacy of the scaffolds in promoting bone regeneration and enhanced healing in the calvarial defect model. The incorporation of CuO not only improved the scaffolds’ mechanical properties but also exhibited angiogenic effects, fostering an environment conducive to bone healing. Our results indicated that the Alg–MgP–CuO scaffolds have great promise for bone tissue engineering applications and repair, especially with 7% (w/w) CuO doping.

- Allison DC, McIntyre JA, Ferro A, Brien E, Menendez LR. Bone grafting alternatives for cavitary defects in children. Curr Orthop Pract. 2013;24(3):267. doi: 10.1097/BCO.0b013e3182910f94.
- Chinnasami H, Dey MK, Devireddy R. Three-dimensional scaffolds for bone tissue engineering. Bioengineering. 2023;10(7):759. doi: 10.3390/bioengineering10070759.
- Ren J, Jiang Y, Jin X, et al. Dissolution and intrusion of chloride disrupted biodegradation products to persistently accelerate biodegradation of Fe-based implants. Corros Sci. 2024;240:112461. ISSN 0010-938X. doi: 10.1016/j.corsci.2024.112461.
- Jiang Y, Ren J, Jin X, et al. Accelerated biodegradation of Fe- 30Mn-S biocomposite via preferential corrosion of secondary phase. Intermetallics. 2024;175:108539. ISSN 0966-9795. doi: 10.1016/j.intermet.2024.108539.
- Micic M, Antonijevic D, Milutinovic-Smiljanic S, et al. Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: physicochemical and biological characterization and proof of concept in segmental rabbit’s ulna reconstruction. Biomed Eng Biomed Technol. 2020;65(4):491-505. doi: 10.1515/bmt-2019-0218.
- Liu L, Shi G, Cui Y, et al. Individual construction of freeform-fabricated polycaprolactone scaffolds for osteogenesis. Biomed Eng Biomed Techol. 2017;62(5):467-479. doi: 10.1515/bmt-2016-0005.
- Tohamy KM, Soliman IE, Mabrouk M, et al. Novel polysaccharide hybrid scaffold loaded with hydroxyapatite: fabrication, bioactivity, and in vivo study. Mater Sci Eng C. 2018;93:1-11. doi: 10.1016/j.msec.2018.07.054
- Ke D, Bose S. Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing. Addit Manuf. 2018;22:111-117. doi: 10.1016/j.addma.2018.04.020.
- Mabrouk M, Beherei HH, ElShebiney S, Tanaka M. Newly developed controlled release subcutaneous formulation for tramadol hydrochloride. Saudi Pharm J. 2018; 26(4):585-592. doi: 10.1016/j.jsps.2018.01.014.
- Rakovsky A, Gotman I, Rabkin E, Gutmanas EY. β-TCP– polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method. J Mech Behav Biomed Mater. 2014;32:89-98. doi: 10.1016/j.jmbbm.2013.12.022.
- Błaszczyk B., Kaspera W., Ficek K., et al., Effects of polylactide copolymer implants and platelet-rich plasma on bone regeneration within a large calvarial defect in sheep. BioMed Res Int. 2018;2018(1):1-11. doi: 10.1155/2018/4120471.
- Hasnain MS, Nayak AK. Alginates: Versatile Polymers in Biomedical Applications and Therapeutics. CRC Press; 2019.
- Abbas HA, Mabrouk M, Soliman AA, Beherei HH. Dual-function membranes based on alginate/methyl cellulose composite for control drug release and proliferation enhancement of fibroblast cells. Int J Biol Macromol. 2020;164:2831-2841. doi: 10.1016/j.ijbiomac.2020.08.171
- Tomić SL, Babić Radić MM, Vuković JS, Filipović VV, Nikodinovic-Runic J, Vukomanović M. Alginate-based hydrogels and scaffolds for biomedical applications. Mar Drugs. 2023;21(3):177. doi: 10.3390/md21030177.
- Tohamy KM, Mabrouk M, Soliman IE, Beherei HH, Aboelnasr MA. Novel alginate/hydroxyethyl cellulose/ hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol. 2018;112:448-460. doi: 10.1016/j.ijbiomac.2018.01.181
- Gutierrez E, Burdiles PA, Quero F, Palma P, Olate-Moya F, Palza H. 3D printing of antimicrobial alginate/bacterial-cellulose composite hydrogels by incorporating copper nanostructures. ACS Biomater Sci Eng. 2019;5(11):6290-6299. doi: 10.1021/acsbiomaterials.9b01048.
- El-Sayed SAM, ElShebiney S, Beherei HH, Kumar P, Choonara YE, Mabrouk M. Copper-doped magnesium phosphate nanopowders for critical size calvarial bone defect intervention. J Biomed Mater Res B Appl Biomater. 2024;112(2):e35376. doi: 10.1002/jbm.b.35376.
- Sithole MN, Kumar P, Du Toit LC, Erlwanger KH, Ubanako PN, Choonara YE. A 3D-printed biomaterial scaffold reinforced with inorganic fillers for bone tissue engineering: in vitro assessment and in vivo animal studies. Int J Mol Sci. 2023;24(8):7611. doi: 10.3390/ijms24087611
- Mabrouk M, Mousa SM, ElGhany WAA, Abo-elfadl MT, El-Bassyouni GT. Bioactivity and cell viability of Ag+- and Zr4+-co-doped biphasic calcium phosphate. Appl Phys A. 2021;127(12):948. doi: 10.1007/s00339-021-05051-1.
- Khalef L, Lydia R, Filicia K, Moussa B. Cell viability and cytotoxicity assays: biochemical elements and cellular compartments. Cell Biochem Funct. 2024;42(3):e4007. doi: 10.1002/cbf.4007
- Tajik S, Garcia CN, Gillooley S, Tayebi L. 3D printing of hybrid-hydrogel materials for tissue engineering: a critical review. Regen Eng Transl Med. 2023;9(1):29-41. doi: 10.1007/s40883-022-00267-w. Epub 2022 Aug 1. PMID: 37193257; PMCID: PMC10181842.
- Badawi MS, Elfayomy S, Zaki BM, Sayed AM, Abuzahra F. Assessment of healing in calvarial bone defect by allogenic demineralized bone matrix and adipose derived stem cells. Egypt J Plast Reconstr Surg. 2018;42(2):353-362. doi: 10.21608/ejprs.2018.80752.
- Hohenbild F, Arango Ospina M, Schmitz SI, Moghaddam A, Boccaccini AR, Westhauser F. An in vitro evaluation of the biological and osteogenic properties of magnesium-doped bioactive glasses for application in bone tissue engineering. Int J Mol Sci. 2021;22(23):12703. doi: 10.3390/ijms222312703.
- Dong J, Ding H, Wang Q, Wang L. A 3D-printed scaffold for repairing bone defects. Polymers. 2024;16(5):706. doi: 10.3390/polym16050706.
- Dong Q, Zhang M, Zhou X, et al. 3D-printed Mg-incorporated PCL-based scaffolds: a promising approach for bone healing. Mater Sci Eng C. 2021;129:112372. doi: 10.1016/j.msec.2021.112372.
- Mácová P, Viani A. Investigation of setting reaction in magnesium potassium phosphate ceramics with time resolved infrared spectroscopy. Mater Lett. 2017;205:62-66. doi: 10.1016/j.matlet.2017.06.063.
- Stefov V, Šoptrajanov B, Kuzmanovski I, Lutz HD, Engelen B. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate. J Mol Struct. 2005;752(1-3):60-67. doi: 10.1016/j.molstruc.2005.05.040.
- Aramendía MA, Borau V, Jiménez C, Marinas JM, Romero FJ. Synthesis and characterization of magnesium phosphates and their catalytic properties in the conversion of 2-hexanol. J Colloid Interface Sci. 1999;217(2):288-298. doi: 10.1006/jcis.1999.6380.
- Kanellopoulos A, Qureshi TS, Al-Tabbaa A. Glass encapsulated minerals for self-healing in cement based composites. Constr Build Mater. 2015;98:780-791. doi: 10.1016/j.conbuildmat.2015.08.127.
- Zhao M, Du J, Lei H, et al. Enhanced electrocatalytic activity of FeNi alloy quantum dot-decorated cobalt carbonate hydroxide nanosword arrays for effective overall water splitting. Nanoscale. 2022;14(8):3191-3199. doi: 10.1039/D1NR08035K.
- Fais G, Sidorowicz A, Perra G, et al., Cytotoxic effects of ZnO and Ag nanoparticles synthesized in microalgae extracts on PC12 cells. Mar Drugs. 2024;22(12):549. doi: 10.3390/md22120549.
- Shen J-N, Yu C-C, Zeng G-N, Van der Bruggen B. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO2/ N2 separation. Int J Mol Sci. 2013;14(2):3621-3638. doi: 10.3390/ijms14023621.
- Pascual-González C, de la Vega J, Thompson C, et al. Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration. J Mech Behav Biomed Mater. 2022;132:105290. doi: 10.1016/j.jmbbm.2022.105290.
- Radhakrishnan S, Nagarajan S, Belaid H, et al. Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C. 2021;118:111525. doi: 10.1016/j.msec.2020.111525.
- Liao M, Zhu S, Guo A, et al. 3D printed bioactive glasses porous scaffolds with high strength for the repair of long-bone segmental defects. Compos B Eng. 2023; 254:110582. doi: 10.1016/j.compositesb.2023.110582.
- Lei B, Gao X, Zhang R, Yi X, Zhou Q. In situ magnesium phosphate/polycaprolactone 3D-printed scaffold induce bone regeneration in rabbit maxillofacial bone defect model. Mater Des. 2022;215:110477. doi: 10.1016/j.matdes.2022.110477.
- Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985;57(4):603-619. doi: 10.1351/pac198557040603.
- Lowell S, Shields JE, Thomas MA, Thommes M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer Science & Business Media; 2012.
- Zhao XS, Lu GQ (Max), Millar GJ. Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res. 1996; 35(7):2075-2090. doi: 10.1021/ie950702a.
- Broekhoff JCP. Mesopore determination from nitrogen sorption isotherms: fundamentals, scope, limitations. In: Studies in Surface Science and Catalysis. Elsevier; 1979;3:663-684. https://www.sciencedirect.com/science/article/pii/ S0167299109602433. Accessed December 25, 2024.
- Lin Z, Cao Y, Zou J, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Mater Sci Eng C. 2020;114:111032. doi: 10.1016/j.msec.2020.111032.
- Yu W, Sun T-W, Ding Z, et al. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. J Mater Chem B. 2017;5(5):1039-1052. doi: 10.1039/C6TB02747D.
- Noori A, Hoseinpour M, Kolivand S, et al. Exploring the various effects of Cu doping in hydroxyapatite nanoparticle. Sci Rep. 2024;14(1):3421. doi: 10.1038/s41598-024-53704-x.
- Chen C-Y, Shie M-Y, Lee AK-X, Chou Y-T, Chiang C, Lin C-P. 3D-printed ginsenoside Rb1-loaded mesoporous calcium silicate/calcium sulfate scaffolds for inflammation inhibition and bone regeneration. Biomedicines. 2021;9(8):907. doi: 10.3390/biomedicines9080907
- Jakus AE, Rutz AL, Jordan SW, et al. Hyperelastic “bone”: a highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med. 2016;8(358):358ra127-358ra127. doi: 10.1126/scitranslmed.aaf7704.
- Reginster J-Y, Seeman E, De Vernejoul MC, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab. 2005;90(5):2816-2822. doi: 10.1210/jc.2004-1774
- Kazakova G, Safronova T, Golubchikov D, Shevtsova O, Rau JV. Resorbable Mg2+-containing phosphates for bone tissue repair. Materials. 2021;14(17):4857. doi: 10.3390/ma14174857.
- Patel H, Bonde M, Srinivasan G. Biodegradable polymer scaffold for tissue engineering. Trends Biomater Artif Organs. 2011;25(1):20-29.
- Wu Z, Meng Z, Wu Q, et al. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng. 2020;11:2041731420967791. doi: 10.1177/2041731420967791.
- Huber F-X, Belyaev O, Hillmeier J, et al. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskelet Disord. 2006;7(1):50. doi: 10.1186/1471-2474-7-50.
- Garcia C, Orozco Y, Betancur A, et al. Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration. Heliyon. 2023;9(2):e13176. doi: 10.1016/j.heliyon.2023.e13176.
- Cheon E, Kim S-H, Lee D-K, et al. Osteostimulating ability of β-tricalcium phosphate/collagen composite as a practical bone-grafting substitute: in vitro and in vivo comparison study with commercial one. Biotechnol Bioprocess Eng. 2021;26(6):923-932. doi: 10.1007/s12257-021-0059-4.
- Kamal M, Andersson L, Tolba R, et al. Bone regeneration using composite non-demineralized xenogenic dentin with beta-tricalcium phosphate in experimental alveolar cleft repair in a rabbit model. J Transl Med. 2017;15(1):263. doi: 10.1186/s12967-017-1369-3.
- Potres Z, Deshpande S, Klöeppel H, Voss K, Klineberg I. Assisted wound healing and vertical bone regeneration with simultaneous implant placement: a histologic pilot study. Int J Oral Maxillofac Implants 2016;31(1):45-54. doi: 10.11607/jomi.3951.
- Luo R, Huang Y, Yuan X, et al. Controlled co-delivery system of magnesium and lanthanum ions for vascularized bone regeneration. Biomed Mater. 2021;16(6):065024. doi: 10.1088/1748-605X/ac2886.
- Wang Z, Zheng B, Yu X, et al. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol. 2024;277:134185. doi: 10.1016/j.ijbiomac.2024.134185.
- Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993;14(4):424-442. doi: 10.1210/edrv-14-4-424
- Sousa CP, Dias IR, Lopez-Peña M, et al. Bone turnover markers for early detection of fracture healing disturbances: a review of the scientific literature. An Acad Bras Ciênc. 2015;87:1049-1061. doi: 10.1590/0001-3765201520150008
- Barralet J, Gbureck U, Habibovic P, Vorndran E, Gerard C, Doillon CJ. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng Part A. 2009;15(7):1601-1609. doi: 10.1089/ten.tea.2007.0370.
- Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem. 2022;10:955993. doi: 10.3389/fchem.2022.955993.
- Mostofi M, Mostofi F, Hosseini S, et al. Efficient three-dimensional (3D) human bone differentiation on quercetin-functionalized isotropic nano-architecture chitinous patterns of cockroach wings. Int J Biol Macromol. 2024;258(2):129155. doi: 10.1016/j.ijbiomac.2023.129155
- Hajduga MB, Bobiński R, Dutka M, et al. Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass. Acta Bioeng Biomech. 2021;23(10.37190):131-138. doi: 10.37190/abb-01766-2020-03.
- Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42-49. doi: 10.1016/j.bone.2015.05.046.
- Alarcin E, Akguner ZP, Ozturk AB, et al. Biomimetic 3D bioprinted bilayer GelMA scaffolds for the delivery of BMP-2 and VEGF exogenous growth factors to promote vascularized bone regeneration in a calvarial defect model in vivo. Int J Biol Macromol. 2025; 306(2):141440. doi: 10.1016/j.ijbiomac.2025.141440
- Dirckx N, Moorer MC, Clemens TL, Riddle RC. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol. 2019;15(11):651-665. doi: 10.1038/s41574-019-0246-y
- Kurdy NMG. Serology of abnormal fracture healing: the role of PIIINP, PICP, and BsALP. J Orthop Trauma. 2000;14(1):48-53. doi: 10.1097/00005131-200001000-00010