AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.5973
RESEARCH ARTICLE

Differentiation of iPSC-derived neural progenitors into motor neurons in 3D-printed bioscaffolds

Yilin Han1 Marianne King2 Hege Brincker Fjerdingstad3 Maurizio Gullo4 Lukas Zeger1 Roland Kádár5 Patrik Ivert1 Joel C. Glover3,6 Laura Ferraiuolo2 Mimoun Azzouz2 Elena N. Kozlova1
Show Less
1 Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
2 Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
3 Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
4 Institute for Medical Engineering & Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
5 Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
6 Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
Received: 14 November 2024 | Accepted: 27 February 2025 | Published online: 27 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Translational medicine for neurodegenerative diseases can advance through the use of in vitro models incorporating human neural cells derived from patient-specific induced pluripotent stem cells (iPSCs). Previously, we investigated whether motor neuron (MN) progenitors derived from human iPSCs could differentiate from MNs within three-dimensional (3D)-printed scaffolds. While extensive neurite arborization was observed on the scaffold surface, no neurite outgrowth occurred within the scaffold interior. Here we showed the extensive growth of the neurites from iPSC-derived neural progenitors, imbedded into the gelatin scaffolds during 30 days of experimental time. We presented a bioink formulation that softens the scaffold while preserving its 3D structure, thereby facilitating neurite outgrowth throughout the scaffold. MN differentiation, evidenced by extensive neurite arborization and the expression of choline acetyltransferase (ChAT), was verified in 3D images deep within the scaffold structure. Notably, the degree of MN differentiation appeared to depend on two factors as follows: the delivery of MN differentiation factors via mesoporous silica particles (MSPs) embedded in the bioink and the method used to generate MN progenitors prior to 3D printing. In this paper, we provide a detailed protocol for 3D-printing human iPSC-derived MN progenitors, enabling their differentiation and survival within gelatin scaffolds. This protocol could be expanded to incorporate additional cell types, allowing the creation of more complex and standardized 3D neural tissues. Such advancements could facilitate investigations into the pathophysiology of motor neuron diseases and the development of new therapeutic strategies.

Graphical abstract
Keywords
3D bioscaffold
Differentiation
Gelatin
Induced pluripotent stem cells
Mesoporous silica
Motor neuron
Funding
E.K. was supported by the Swedish Research Council (Dnr 2019-02240) to E.K within the frame of EU Joint Programme of Neurodegenerative Diseases, and by the Swedish Natonal Space Agency (Dnr 2021-0005, Dnr 2024-00211). M.A., L.F., and M.K. were funded by MRC grant#MR/V000470/1.
Conflict of interest
The authors declare no conflict of interest.
References
  1. Pașca SP, Arlotta P, Bateup HS, et al. A nomenclature consensus for nervous system organoids and assembloids. Nature. 2022;609(7929):907-910. doi: 10.1038/s41586-022-05219-6
  2. Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol. 2024;1-24. doi: 10.1038/s41580-024-00804-1.
  3. Yan Y, Li X, Gao Y, et al. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell. 2024;31(2):260-274. doi: 10.1016/j.stem.2023.12.009
  4. Willerth SM. Bioprinting functional neural networks. Cell Stem Cell. 2024;31(2):151-152. doi: 10.1016/j.stem.2023.12.014
  5. Bock M, Hong SJ, Zhang S, et al. Morphogenetic designs, and disease models in central nervous system organoids. Int J Mol Sci. 2024;25(14):7750. doi: 10.3390/ijms25147750
  6. Ma L, Zhang Z, Mu Y, Liu B, Zhou H, Wang D. The application of biomaterial‐based spinal cord tissue engineering. Macromol Biosci. 2024:e2400444. doi: 10.1002/mabi.202400444
  7. Huang MS, Christakopoulos F, Roth JG, Heilshorn SC. Organoid bioprinting: from cells to functional tissues. Nat Rev Bioeng. 2024;3:1-17. doi: 10.1038/s44222-024-00268-0
  8. Rodriguez-Palomo A, Lutz-Bueno V, Guizar-Sicairos M, Kádár R, Andersson M, Liebi M. Nanostructure and anisotropy of 3D printed lyotropic liquid crystals studied by scattering and birefringence imaging. Addit Manuf. 2021;47:102289. doi: 10.1016/j.addma.2021.102289
  9. Rodriguez‐Palomo A, Lutz‐Bueno V, Cao X, Kádár R, Andersson M, Liebi M. In situ visualization of the structural evolution and alignment of lyotropic liquid crystals in confined flow. Small. 2021;17(7):2006229. doi: 10.1002/smll.202006229
  10. Rau DA, Williams CB, Bortner MJ. Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog Mater Sci. 2023;140:101188. doi: 10.1016/j.pmatsci.2023.101188
  11. Pașca SP, Arlotta P, Bateup HS, et al. A framework for neural organoids, assembloids and transplantation studies. Nature. 2024:1–3. doi: 10.1038/s41586-024-08487-6
  12. Scarian E, Bordoni M, Fantini V, et al. Patients’ stem cells differentiation in a 3D environment as a promising experimental tool for the study of amyotrophic lateral sclerosis. Int J Mol Sci. 2022;23(10):5344. doi: 10.3390/ijms23105344
  13. Han Y, King M, Tikhomirov E, et al. Towards 3D bioprinted spinal cord organoids. Int J Mol Sci. 2022; 23(10):5788. doi: 10.3390/ijms23105788
  14. Young AT, White OC, Daniele MA. Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromol Biosci. 2020;20(12):e2000183. doi: 10.1002/mabi.202000183
  15. Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12(17):e2203148. doi: 10.1002/adhm.202203148
  16. Yuan X, Zhu Z, Xia P, et al. Tough gelatin hydrogel for tissue engineering. Adv Sci (Weinh). 2023;10(24):e2301665. doi: 10.1002/advs.202301665
  17. Elosegui-Artola A, Gupta A, Najibi AJ, et al. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat Mater. 2023;22(1):117-127. doi: 10.1038/s41563-022-01400-4
  18. Chen X, Liu C, McDaniel G, et al. Viscoelasticity of hyaluronic acid hydrogels regulates human pluripotent stem cell‐derived spinal cord organoid patterning and vascularization. Adv Healthc Mater. 2024;13(32):e2402199. doi: 10.1002/adhm.202402199
  19. Garcia-Bennett AE, König N, Abrahamsson N, et al. In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles. Nanomedicine. 2014;9(16):2457-2466. doi: 10.2217/nnm.14.23
  20. Garcia-Bennett AE, Kozhevnikova M, König N, et al. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl Med. 2013;2(11):906-915. doi: 10.5966/sctm.2013-0072
  21. Aldskogius H, Berens C, Kanaykina N, et al. Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells. 2009;27(7):1592-1603. doi: 10.1002/stem.77
  22. Rønn LC, Ralets I, Hartz BP, et al. A simple procedure for quantification of neurite outgrowth based on stereological principles. J Neurosci Methods. 2000;100(1-2):25-32. doi: 10.1016/s0165-0270(00)00228-4
  23. Normand V, Muller S, Ravey JC, Parker A. Gelation kinetics of gelatin: a master curve and network modeling. Macromolecules. 2000;33(3):1063-1071. doi: 10.1021/ma9909455
  24. Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. Technology (Singap World Sci). 2016;4(1):1-8. doi: 10.1142/S2339547816400070
  25. Tringides CM, Boulingre M, Khalil A, Lungjangwa T, Jaenisch R, Mooney DJ. Tunable conductive hydrogel scaffolds for neural cell differentiation. Adv Healthc Mater. 2023;12(7):e2202221. doi: 10.1002/adhm.202202221
  26. Layrolle P, Payoux P, Chavanas S. Message in a scaffold: natural biomaterials for three-dimensional (3D) bioprinting of human brain organoids. Biomolecules. 2022;13(1):25. doi: 10.3390/biom13010025
  27. Zhang W, Chu G, Wang H, Chen S, Li B, Han F. Effects of matrix stiffness on the differentiation of multipotent stem cells. Curr Stem Cell Res Ther. 2020;15(5):449-461. doi: 10.2174/1574888X15666200408114632
  28. Castillo Ransanz L, Van Altena PF, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol. 2022;10:1096054. doi: 10.3389/fbioe.2022.1096054
  29. Roth JG, Huang MS, Navarro RS, Akram JT, LeSavage BL, Heilshorn SC. Tunable hydrogel viscoelasticity modulates human neural maturation. Sci Adv. 2023;9(42):eadh8313. doi: 10.1126/sciadv.adh8313
  30. Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation. Pharmaceutics. 2023;15(2):627. doi: 10.3390/pharmaceutics15020627
  31. Kwokdinata C, Ramanujam V, Chen J, et al. Encapsulation of human spinal cord progenitor cells in hyaluronan-gelatin hydrogel for spinal cord injury treatment. ACS Appl Mater Interfaces. 2023;15(44):50679-50692. doi: 10.1021/acsami.3c07419
  32. Wang P, Qian L, Liang H, et al. A polyvinyl alcohol/ acrylamide hydrogel with enhanced mechanical properties promotes full-thickness skin defect healing by regulating immunomodulation and angiogenesis through paracrine secretion. Engineering. 2024;37:138-151. doi: 10.1016/j.eng.2024.02.005
  33. Lukin I, Erezuma I, Maeso L, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022;14(6):1177. doi: 10.3390/pharmaceutics14061177
  34. Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-linking strategies for electrospun gelatin scaffolds. Materials (Basel). 2019;12(15):2476. doi: 10.3390/ma12152476
  35. Van Vlierberghe S. Crosslinking strategies for porous gelatin scaffolds. J Mater Sci. 2016;51(9):4349-4357. doi: 10.1007/s10853-016-9747-4
  36. Cataldo F, Ursini O, Lilla E, Angelini G. Radiation-induced crosslinking of collagen gelatin into a stable hydrogel. J Radioanal Nucl Chem. 2008;275(1):125-131. doi: 10.1007/s10967-007-7003-8
  37. Omata K, Matsuno T, Asano K, Hashimoto Y, Tabata Y, Satoh T. Enhanced bone regeneration by gelatin–β‐tricalcium phosphate composites enabling controlled release of bFGF. J Tissue Eng Regen Med. 2014;8(8):604-611. doi: 10.1002/term.1553
  38. Dinh TN, Hou S, Park S, Shalek BA, Jeong KJ. Gelatin hydrogel combined with polydopamine coating to enhance tissue integration of medical implants. ACS Biomater Sci Eng. 2018;4(10):3471-3477. doi: 10.1021/acsbiomaterials.8b00886
  39. Wen C, Lu L, Li X. Mechanically robust gelatin–a lginate IPN hydrogels by a combination of enzymatic and ionic crosslinking approaches. Macromol Mater Eng. 2014;299(4):504-513. doi: 10.1002/mame.201300274
  40. Campiglio CE, Ponzini S, De Stefano P, Ortoleva G, Vignati L, Draghi L. Cross-linking optimization for electrospun gelatin: challenge of preserving fiber topography. Polymers (Basel). 2020;12(11):2472. doi: 10.3390/polym12112472
  41. Esteves C, Santos GM, Alves C, et al. Effect of film thickness in gelatin hybrid gels for artificial olfaction. Materials Today Bio. 2019;1:100002. doi: 10.1016/j.mtbio.2019.100002
  42. Negrini NC, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater. 2019;87:61-75. doi: 10.1016/j.actbio.2019.01.018
  43. Negrini NC, Celikkin N, Tarsini P, Farè S, Święszkowski W. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication. 2020;12(2):025001. doi: 10.1088/1758-5090/ab56f9.
  44. Sarem M, Arya N, Heizmann M, et al. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater. 2018;69:83-94. doi: 10.1016/j.actbio.2018.01.025
  45. Yang G, Xiao Z, Long H, et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018;8(1):1616. doi: 10.1038/s41598-018-20006-y
  46. Sapuła P, Bialik-Wąs K, Malarz K. Are natural compounds a promising alternative to synthetic cross-linking agents in the preparation of hydrogels? Pharmaceutics. 2023;15(1):253. doi: 10.3390/pharmaceutics15010253
  47. Kerscher P, Kaczmarek JA, Head SE, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng. 2017;3(8):1499-1509. doi: 10.1021/acsbiomaterials.6b00226
  48. Van Hoorick J, Tytgat L, Dobos A, et al. (Photo-) crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater. 2019;97:46-73. doi: 10.1016/j.actbio.2019.07.035
  49. Lim WL, Chowdhury SR, Ng MH, Law JX. Physicochemical properties and biocompatibility of electrospun polycaprolactone/gelatin nanofibers. Int J Environ Res Public Health. 2021;18(9):4764. doi: 10.3390/ijerph18094764.
  50. Nguyen AK, Goering PL, Elespuru RK, Sarkar Das S, Narayan RJ. The photoinitiator lithium phenyl (2,4,6-Trimethylbenzoyl) phosphinate with exposure to 405 nm light is cytotoxic to mammalian cells but not mutagenic in bacterial reverse mutation assays. Polymers. 2020;12(7):1489. doi: 10.3390/polym12071489
  51. Sletten EM, Bertozzi CR. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res. 2011;44(9):666-676. doi: 10.1021/ar200148z
  52. Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B. 2020;8(35):7835-7855. doi: 10.1039/d0tb01429j.
  53. Koshy ST, Zhang DK, Grolman JM, Stafford AG, Mooney DJ. Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater. 2018;65:36-43. doi: 10.1016/j.actbio.2017.11.024
  54. Contessi Negrini N, Angelova Volponi A, Sharpe PT, Celiz AD. Tunable cross-linking and adhesion of gelatin hydrogels via bioorthogonal click chemistry. ACS Biomater Sci Eng. 2021;7(9):4330-4346. doi: 10.1021/acsbiomaterials
  55. Tytgat L, Markovic M, Qazi TH, et al. Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. J Mater Chem B. 2019;7(19):3100-3108. doi: 10.1039/C8TB03308K
  56. Lin Y, Du H, Roos Y, Miao S. Transglutaminase crosslinked fish gelatins for emulsion stabilization: from conventional to Pickering emulsions. Food Hydrocolloids. 2023; 144:108979. doi: 10.1016/j.foodhyd.2023.108979
  57. Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal cord organoids to study motor neuron development and disease. Life (Basel). 2023;13(6):1254. doi: 10.3390/life13061254

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing