Differentiation of iPSC-derived neural progenitors into motor neurons in 3D-printed bioscaffolds

Translational medicine for neurodegenerative diseases can advance through the use of in vitro models incorporating human neural cells derived from patient-specific induced pluripotent stem cells (iPSCs). Previously, we investigated whether motor neuron (MN) progenitors derived from human iPSCs could differentiate from MNs within three-dimensional (3D)-printed scaffolds. While extensive neurite arborization was observed on the scaffold surface, no neurite outgrowth occurred within the scaffold interior. Here we showed the extensive growth of the neurites from iPSC-derived neural progenitors, imbedded into the gelatin scaffolds during 30 days of experimental time. We presented a bioink formulation that softens the scaffold while preserving its 3D structure, thereby facilitating neurite outgrowth throughout the scaffold. MN differentiation, evidenced by extensive neurite arborization and the expression of choline acetyltransferase (ChAT), was verified in 3D images deep within the scaffold structure. Notably, the degree of MN differentiation appeared to depend on two factors as follows: the delivery of MN differentiation factors via mesoporous silica particles (MSPs) embedded in the bioink and the method used to generate MN progenitors prior to 3D printing. In this paper, we provide a detailed protocol for 3D-printing human iPSC-derived MN progenitors, enabling their differentiation and survival within gelatin scaffolds. This protocol could be expanded to incorporate additional cell types, allowing the creation of more complex and standardized 3D neural tissues. Such advancements could facilitate investigations into the pathophysiology of motor neuron diseases and the development of new therapeutic strategies.

- Pașca SP, Arlotta P, Bateup HS, et al. A nomenclature consensus for nervous system organoids and assembloids. Nature. 2022;609(7929):907-910. doi: 10.1038/s41586-022-05219-6
- Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol. 2024;1-24. doi: 10.1038/s41580-024-00804-1.
- Yan Y, Li X, Gao Y, et al. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell. 2024;31(2):260-274. doi: 10.1016/j.stem.2023.12.009
- Willerth SM. Bioprinting functional neural networks. Cell Stem Cell. 2024;31(2):151-152. doi: 10.1016/j.stem.2023.12.014
- Bock M, Hong SJ, Zhang S, et al. Morphogenetic designs, and disease models in central nervous system organoids. Int J Mol Sci. 2024;25(14):7750. doi: 10.3390/ijms25147750
- Ma L, Zhang Z, Mu Y, Liu B, Zhou H, Wang D. The application of biomaterial‐based spinal cord tissue engineering. Macromol Biosci. 2024:e2400444. doi: 10.1002/mabi.202400444
- Huang MS, Christakopoulos F, Roth JG, Heilshorn SC. Organoid bioprinting: from cells to functional tissues. Nat Rev Bioeng. 2024;3:1-17. doi: 10.1038/s44222-024-00268-0
- Rodriguez-Palomo A, Lutz-Bueno V, Guizar-Sicairos M, Kádár R, Andersson M, Liebi M. Nanostructure and anisotropy of 3D printed lyotropic liquid crystals studied by scattering and birefringence imaging. Addit Manuf. 2021;47:102289. doi: 10.1016/j.addma.2021.102289
- Rodriguez‐Palomo A, Lutz‐Bueno V, Cao X, Kádár R, Andersson M, Liebi M. In situ visualization of the structural evolution and alignment of lyotropic liquid crystals in confined flow. Small. 2021;17(7):2006229. doi: 10.1002/smll.202006229
- Rau DA, Williams CB, Bortner MJ. Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog Mater Sci. 2023;140:101188. doi: 10.1016/j.pmatsci.2023.101188
- Pașca SP, Arlotta P, Bateup HS, et al. A framework for neural organoids, assembloids and transplantation studies. Nature. 2024:1–3. doi: 10.1038/s41586-024-08487-6
- Scarian E, Bordoni M, Fantini V, et al. Patients’ stem cells differentiation in a 3D environment as a promising experimental tool for the study of amyotrophic lateral sclerosis. Int J Mol Sci. 2022;23(10):5344. doi: 10.3390/ijms23105344
- Han Y, King M, Tikhomirov E, et al. Towards 3D bioprinted spinal cord organoids. Int J Mol Sci. 2022; 23(10):5788. doi: 10.3390/ijms23105788
- Young AT, White OC, Daniele MA. Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromol Biosci. 2020;20(12):e2000183. doi: 10.1002/mabi.202000183
- Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12(17):e2203148. doi: 10.1002/adhm.202203148
- Yuan X, Zhu Z, Xia P, et al. Tough gelatin hydrogel for tissue engineering. Adv Sci (Weinh). 2023;10(24):e2301665. doi: 10.1002/advs.202301665
- Elosegui-Artola A, Gupta A, Najibi AJ, et al. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat Mater. 2023;22(1):117-127. doi: 10.1038/s41563-022-01400-4
- Chen X, Liu C, McDaniel G, et al. Viscoelasticity of hyaluronic acid hydrogels regulates human pluripotent stem cell‐derived spinal cord organoid patterning and vascularization. Adv Healthc Mater. 2024;13(32):e2402199. doi: 10.1002/adhm.202402199
- Garcia-Bennett AE, König N, Abrahamsson N, et al. In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles. Nanomedicine. 2014;9(16):2457-2466. doi: 10.2217/nnm.14.23
- Garcia-Bennett AE, Kozhevnikova M, König N, et al. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl Med. 2013;2(11):906-915. doi: 10.5966/sctm.2013-0072
- Aldskogius H, Berens C, Kanaykina N, et al. Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells. 2009;27(7):1592-1603. doi: 10.1002/stem.77
- Rønn LC, Ralets I, Hartz BP, et al. A simple procedure for quantification of neurite outgrowth based on stereological principles. J Neurosci Methods. 2000;100(1-2):25-32. doi: 10.1016/s0165-0270(00)00228-4
- Normand V, Muller S, Ravey JC, Parker A. Gelation kinetics of gelatin: a master curve and network modeling. Macromolecules. 2000;33(3):1063-1071. doi: 10.1021/ma9909455
- Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. Technology (Singap World Sci). 2016;4(1):1-8. doi: 10.1142/S2339547816400070
- Tringides CM, Boulingre M, Khalil A, Lungjangwa T, Jaenisch R, Mooney DJ. Tunable conductive hydrogel scaffolds for neural cell differentiation. Adv Healthc Mater. 2023;12(7):e2202221. doi: 10.1002/adhm.202202221
- Layrolle P, Payoux P, Chavanas S. Message in a scaffold: natural biomaterials for three-dimensional (3D) bioprinting of human brain organoids. Biomolecules. 2022;13(1):25. doi: 10.3390/biom13010025
- Zhang W, Chu G, Wang H, Chen S, Li B, Han F. Effects of matrix stiffness on the differentiation of multipotent stem cells. Curr Stem Cell Res Ther. 2020;15(5):449-461. doi: 10.2174/1574888X15666200408114632
- Castillo Ransanz L, Van Altena PF, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol. 2022;10:1096054. doi: 10.3389/fbioe.2022.1096054
- Roth JG, Huang MS, Navarro RS, Akram JT, LeSavage BL, Heilshorn SC. Tunable hydrogel viscoelasticity modulates human neural maturation. Sci Adv. 2023;9(42):eadh8313. doi: 10.1126/sciadv.adh8313
- Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation. Pharmaceutics. 2023;15(2):627. doi: 10.3390/pharmaceutics15020627
- Kwokdinata C, Ramanujam V, Chen J, et al. Encapsulation of human spinal cord progenitor cells in hyaluronan-gelatin hydrogel for spinal cord injury treatment. ACS Appl Mater Interfaces. 2023;15(44):50679-50692. doi: 10.1021/acsami.3c07419
- Wang P, Qian L, Liang H, et al. A polyvinyl alcohol/ acrylamide hydrogel with enhanced mechanical properties promotes full-thickness skin defect healing by regulating immunomodulation and angiogenesis through paracrine secretion. Engineering. 2024;37:138-151. doi: 10.1016/j.eng.2024.02.005
- Lukin I, Erezuma I, Maeso L, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022;14(6):1177. doi: 10.3390/pharmaceutics14061177
- Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-linking strategies for electrospun gelatin scaffolds. Materials (Basel). 2019;12(15):2476. doi: 10.3390/ma12152476
- Van Vlierberghe S. Crosslinking strategies for porous gelatin scaffolds. J Mater Sci. 2016;51(9):4349-4357. doi: 10.1007/s10853-016-9747-4
- Cataldo F, Ursini O, Lilla E, Angelini G. Radiation-induced crosslinking of collagen gelatin into a stable hydrogel. J Radioanal Nucl Chem. 2008;275(1):125-131. doi: 10.1007/s10967-007-7003-8
- Omata K, Matsuno T, Asano K, Hashimoto Y, Tabata Y, Satoh T. Enhanced bone regeneration by gelatin–β‐tricalcium phosphate composites enabling controlled release of bFGF. J Tissue Eng Regen Med. 2014;8(8):604-611. doi: 10.1002/term.1553
- Dinh TN, Hou S, Park S, Shalek BA, Jeong KJ. Gelatin hydrogel combined with polydopamine coating to enhance tissue integration of medical implants. ACS Biomater Sci Eng. 2018;4(10):3471-3477. doi: 10.1021/acsbiomaterials.8b00886
- Wen C, Lu L, Li X. Mechanically robust gelatin–a lginate IPN hydrogels by a combination of enzymatic and ionic crosslinking approaches. Macromol Mater Eng. 2014;299(4):504-513. doi: 10.1002/mame.201300274
- Campiglio CE, Ponzini S, De Stefano P, Ortoleva G, Vignati L, Draghi L. Cross-linking optimization for electrospun gelatin: challenge of preserving fiber topography. Polymers (Basel). 2020;12(11):2472. doi: 10.3390/polym12112472
- Esteves C, Santos GM, Alves C, et al. Effect of film thickness in gelatin hybrid gels for artificial olfaction. Materials Today Bio. 2019;1:100002. doi: 10.1016/j.mtbio.2019.100002
- Negrini NC, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater. 2019;87:61-75. doi: 10.1016/j.actbio.2019.01.018
- Negrini NC, Celikkin N, Tarsini P, Farè S, Święszkowski W. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication. 2020;12(2):025001. doi: 10.1088/1758-5090/ab56f9.
- Sarem M, Arya N, Heizmann M, et al. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater. 2018;69:83-94. doi: 10.1016/j.actbio.2018.01.025
- Yang G, Xiao Z, Long H, et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018;8(1):1616. doi: 10.1038/s41598-018-20006-y
- Sapuła P, Bialik-Wąs K, Malarz K. Are natural compounds a promising alternative to synthetic cross-linking agents in the preparation of hydrogels? Pharmaceutics. 2023;15(1):253. doi: 10.3390/pharmaceutics15010253
- Kerscher P, Kaczmarek JA, Head SE, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng. 2017;3(8):1499-1509. doi: 10.1021/acsbiomaterials.6b00226
- Van Hoorick J, Tytgat L, Dobos A, et al. (Photo-) crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater. 2019;97:46-73. doi: 10.1016/j.actbio.2019.07.035
- Lim WL, Chowdhury SR, Ng MH, Law JX. Physicochemical properties and biocompatibility of electrospun polycaprolactone/gelatin nanofibers. Int J Environ Res Public Health. 2021;18(9):4764. doi: 10.3390/ijerph18094764.
- Nguyen AK, Goering PL, Elespuru RK, Sarkar Das S, Narayan RJ. The photoinitiator lithium phenyl (2,4,6-Trimethylbenzoyl) phosphinate with exposure to 405 nm light is cytotoxic to mammalian cells but not mutagenic in bacterial reverse mutation assays. Polymers. 2020;12(7):1489. doi: 10.3390/polym12071489
- Sletten EM, Bertozzi CR. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res. 2011;44(9):666-676. doi: 10.1021/ar200148z
- Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B. 2020;8(35):7835-7855. doi: 10.1039/d0tb01429j.
- Koshy ST, Zhang DK, Grolman JM, Stafford AG, Mooney DJ. Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater. 2018;65:36-43. doi: 10.1016/j.actbio.2017.11.024
- Contessi Negrini N, Angelova Volponi A, Sharpe PT, Celiz AD. Tunable cross-linking and adhesion of gelatin hydrogels via bioorthogonal click chemistry. ACS Biomater Sci Eng. 2021;7(9):4330-4346. doi: 10.1021/acsbiomaterials
- Tytgat L, Markovic M, Qazi TH, et al. Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. J Mater Chem B. 2019;7(19):3100-3108. doi: 10.1039/C8TB03308K
- Lin Y, Du H, Roos Y, Miao S. Transglutaminase crosslinked fish gelatins for emulsion stabilization: from conventional to Pickering emulsions. Food Hydrocolloids. 2023; 144:108979. doi: 10.1016/j.foodhyd.2023.108979
- Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal cord organoids to study motor neuron development and disease. Life (Basel). 2023;13(6):1254. doi: 10.3390/life13061254