A 3D-printed micro-perfused culture device with embedded 3D fibrous scaffold for enhanced biomimicry
Additive manufacturing has rapidly revolutionized the medical sectors since it is a versatile, cost-effective, assembly free technique with the ability to replicate geometrically complicated features. Some of the widely reported applications include the printing of scaffolds, implants, or microfluidic devices. In this study, a 3D-printed micro-perfused culture (MPC) device embedded with a nanofibrous scaffold was designed to create an integrated micro-perfused 3D cell culture environment for living cells. The addition of 3D fibrous scaffold onto the microfluidic chip was to provide a more physiologically relevant microenvironment for cell culture studies. Stereolithography was adopted in this study as this technique obviates excessive preassembly and bonding steps, which would otherwise be needed in conventional microfluidic fabrication. Huh7.5 hepatocellular carcinoma cells were used as model cells for this platform since liver cells experience similar perfused microenvironment. Preliminary cell studies revealed that gene expressions of albumin (ALB) and cytochrome P450 isoform (CYP3A7) were found to be significantly upregulated on the 3D-printed MPC device as compared to the static counterpart. Taken together, the 3D-printed MPC device is shown to be a physiologically relevant platform for the maintenance of liver cells. The device and printing technique developed in this study is highly versatile and tailorable to mimic local in vivo microenvironment needs of various tissues, which could be studied in future.
- Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov Today, 2008;13(1-2):1-13. doi: 10.1016/j.drudis.2007.10.003
- Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026-2035. doi: 10.1039/b900912d
- Becker H, Locascio LE. Polymer microfluidic devices. Talanta. 2002;56(2):267-287. doi: 10.1016/s0039-9140(01)00594-x
- van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: From tools to tissue models. Curr Opin Biotechnol. 2015;35:118-126. doi: 10.1016/j.copbio.2015.05.002
- Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
- Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720-1742. doi: 10.1039/C6LC00163G
- Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid. 2016;20(3):50. doi: 10.1007/s10404-016-1715-4
- Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann J, Segal E. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection. Microchim Acta. 2021;188(3):67. doi: 10.1088/1361-6439/aa7117
- Li F, Macdonald NP, Guijt RM, Breadmore MC. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip. 2019;19(1):35-49. doi: 10.1039/C8LC00826D
- Razavi Bazaz S, Rouhi O, Raoufi MA, et al. 3D printing of inertial microfluidic devices. Sci Rep. 2020;10(1):5929. doi: 10.1038/s41598-020-62569-9
- Carnero B, Bao-Varela C, Gómez-Varela AI, Álvarez E, Flores-Arias MT. Microfluidic devices manufacturing with a stereolithographic printer for biological applications. Mater Sci Eng C. 2021;129:112388. doi: 10.1016/j.msec.2021.112388
- Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proc Natl Acad Sci U S A. 2014;111(42):15013-15018. doi: 10.1073/pnas.1414764111
- Au AK, Bhattacharjee N, Horowitz LF, Changa TC, Folch A. 3D-printed microfluidic automation. Lab Chip. 2015;15(8):1934-1941. doi: 10.1039/C5LC00126A
- Weisgrab G, Ovsianikov A, Costa PF. Functional 3D printing for microfluidic chips. Adv Mater Technol. 2019;4(10):1900275. doi: 10.1002/admt.201900275
- Parthiban P, Vijayan S, Doyle PS, Hashimoto M. Evaluation of 3D-printed molds for fabrication of non-planar microchannels. Biomicrofluidics. 2021;15(2):024111. doi: 10.1063/5.0047497
- Yang L, Shridhar SV, Gerwitz M, Soman P. An in vitro vascular chip using 3D printing-enabled hydrogel casting. Biofabrication. 2016;8(3):035015. doi: 10.1088/1758-5090/8/3/035015
- Urrios A, Parra-Cabrera C, Bhattacharjee N, et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip. 2016;16(12):2287-2294. doi: 10.1039/C6LC00153J
- Yang C, Luo J, Polunas M, et al. 4D-printed transformable tube array for high-throughput 3D cell culture and histology. Adv Mater. 2020;32(40):2004285. doi: 10.1002/adma.202004285
- Ong LJY, Islam A, DasGupta R, et al. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication. 2017;9(4):045005. doi: 10.1002/adma.202004285
- Sweet E, Yang B, Chen J, et al. 3D microfluidic gradient generator for combination antimicrobial susceptibility testing. Microsyst Nanoeng. 2020;6(1):92. doi: 10.1038/s41378-020-00200-7
- Cabaleiro JM. Flowrate independent 3D printed microfluidic concentration gradient generator. Chem Eng J. 2020;382:122742. doi: 10.1016/j.cej.2019.122742
- Kitson PJ, Glatzel S, Chen W, Chen W, Lin C-G, Song Y-F, Cronin L. 3D printing of versatile reactionware for chemical synthesis. Nat Protoc. 2016;11(5):920-936. doi: 10.1038/nprot.2016.041
- Ota H, Kodama T, Miki N. Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study. Biomicrofluidics. 2011;5(3):34105-3410515. doi: 10.1063%2F1.3609969
- Martinez Galvez JM, Garcia-Hernando M, Benito-Lopez F, Basabe-Desmonts L, Shnyrova AV. Microfluidic chip with pillar arrays for controlled production and observation of lipid membrane nanotubes. Lab Chip. 2020;20(15): 2748-2755. doi: 10.1039/D0LC00451K
- Bischel LL, Young EW, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34(5): 1471-1477. doi: 10.1016/j.biomaterials.2012.11.005
- Bersini S, Jeon JS, Dubini G, et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35(8):2454-2461. doi: 10.1016/j.biomaterials.2013.11.050
- Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A, Tasoglu S. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication. 2016;8(2): 025019. doi: 10.1088/1758-5090/8/2/025019
- Yang Q, Ju D, Liu Y, et al. Design of organ-on-a-chip to improve cell capture efficiency. Int J Mech Sci. 2021;209:106705. doi: 10.1016/j.ijmecsci.2021.106705
- Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv Funct Mater. 2021;31(24):2100848. doi: 10.1002/adfm.202100848
- Kim YT, Bohjanen S, Bhattacharjee N, Folch A. Partitioning of hydrogels in 3D-printed microchannels. Lab Chip. 2019;19(18):3086-3093. doi: 10.1039/C9LC00535H
- Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research. 2022;2022:9794745. doi: 10.34133/2022/9794745
- Wang X, Yu Y, Yang C, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater. 2021;31(40):2105190. doi: 10.1002/adfm.202105190
- Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14): 1413-1433. doi: 10.1016/j.addr.2007.04.022
- D’Arcangelo E, McGuigan AP. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques. 2015;58(1):13-23. doi: 10.2144/000114245
- Isomursu A, Park K-Y, Hou J, et al. Directed cell migration towards softer environments. Nat Mater. 2022;21(9):1081-1090. doi: 10.1038/s41563-022-01294-2
- Liu H, Wu M, Jia Y, Niu L, Huang G, Xu F. Control of fibroblast shape in sequentially formed 3D hybrid hydrogels regulates cellular responses to microenvironmental cues. NPG Asia Mater. 2020;12(1):45. doi: 10.1038/s41427-020-0226-7
- Zhang W, Huang G, Xu F. Engineering biomaterials and approaches for mechanical stretching of cells in three dimensions. Front Bioeng Biotechnol. 2020;8:589590. doi: 10.3389/fbioe.2020.589590
- Yu F, Deng R, Hao Tong W, et al. A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Sci Rep. 2017;7(1):14528. doi: 10.1038/s41598-017-13848-5
- Mogosanu D-E, Verplancke R, Dubruel P, Vanfleteren J. Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater Design. 2016;89:1315-1324. https://www.researchgate.net/publication/283910649_ mogosanu_2015_MADE_published
- Justice BA, Badr NA, Felder RA. 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today. 2009;14(1-2):102-107. doi: 10.1016/j.drudis.2008.11.006
- Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016;11(10):1775-1781. doi: 10.1038/nprot.2016.123
- Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13-22. doi: 10.1038/nnano.2010.246
- Toh YC, Zhang C, Zhang J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 2007;7(3):302-309. doi: 10.1039/b614872g
- Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467-491. doi: 10.1038/s41576-022-00466-9
- Chen H, Peng Y, Wu S, Tan LP. Electrospun 3D fibrous scaffolds for chronic wound repair. Materials (Basel, Switzerland). 2016;9(4):272. doi: 10.3390/ma9040272
- Ng FL, Ong YO, Chen HZ, et al. A facile method for fabricating a three-dimensional aligned fibrous scaffold for vascular application. RSC Adv. 2019;9(23):13054-13064. doi: 10.1039/C9RA00661C
- Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485-502. doi: 10.1089/ten.TEB.2012.0437
- Brown JH, Das P, DiVito MD, Ivancic D, Tan LP, Wertheim JA. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018;73:217-227. doi: 10.1016/j.actbio.2018.02.009
- Das P, DiVito MD, Wertheim JA, Tan LP. Bioengineered 3D electrospun nanofibrous scaffold with human liver cells to study alcoholic liver disease in vitro. Integr Biol (Camb). 2021;13(7):184-195. doi: 10.1093/intbio/zyab011
- Das P, DiVito MD, Wertheim JA, Tan LP. Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Mater Sci Eng C. 2020;111:110723. doi: 10.1016/j.msec.2020.110723
- Chor A, Gonçalves RP, Costa AM, et al. In vitro degradation of electrospun poly(lactic-co-glycolic acid) (PLGA) for oral mucosa regeneration. Polymers (Basel). 2020;12(8):1853. doi: 10.3390/polym12081853
- Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86(6):3124-3130. doi: 10.1021/ac4041857
- Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip. 2007;7(6):681-694. doi: 10.1039/b704602b
- Chen ZZ, Gao ZM, Zeng DP, Liu B, Luan Y, Qin K-R. A Y-shaped microfluidic device to study the combined effect of wall shear stress and ATP signals on intracellular calcium dynamics in vascular endothelial cells. Micromachines (Basel). 2016;7(11):213. doi: 10.3390/mi7110213
- Tang K, Li S, Li P, et al. Shear stress stimulates integrin β1 trafficking and increases directional migration of cancer cells via promoting deacetylation of microtubules. Biochim Biophys Acta (BBA) Mol Cell Res. 2020;1867(5):118676. doi: 10.1016/j.bbamcr.2020.118676
- Bhumiratana S, Bernhard J, Cimetta E, Vunjak-Novakovic G. Chapter 14—Principles of bioreactor design for tissue engineering, in Principles of Tissue Engineering. 7th ed. R Lanza, R Langer, and J Vacanti, Eds, Academic Press, Boston. 2014;261-278. doi: 10.1016/B978-0-12-398358-9.00014-8
- Tay CY, Irvine SA, Boey FY, Tan LP, Venkatraman S. Micro-/ nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small. 2011;7(10):1361-1378. doi: 10.1002/smll.201100046ç
- Ho CM, Ng SH, Li KH, Yoon Y-J. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18): 3627-3637. doi: 10.1039/c5lc00685f
- Kreß S, Schaller-Ammann R, Feiel J, Priedl J, Kasper C, Egger Dominik. 3D printing of cell culture devices: Assessment and prevention of the cytotoxicity of photopolymers for stereolithography. Materials (Basel). 2020;13(13):3011. doi: 10.3390/ma13133011
- Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater. 2015;10(1):015018. doi: 10.1088/1748-6041/10/1/015018
- Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2009;15(4):913-921. doi: 10.1089/ten.tea.2008.0109
- Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2011;17(5-6):831-840. doi: 10.1089/ten.TEA.2010.0409
- Powers MJ, Domansky K, Kaazempur-Mofrad MR, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng. 2002;78(3):257-269.
- Mainardi VL, Arrigoni C, Bianchi E, et al. Improving cell seeding efficiency through modification of fiber geometry in 3D printed scaffolds. Biofabrication. 2021;13(3):035025. doi: 10.1088/1758-5090/abe5b4
- Ayala R, Zhang C, Yang D, et al. Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011;32(15): 3700-3711. doi: 10.1016/j.biomaterials.2011.02.004
- Leferink AM, Hendrikson WJ, Rouwkema J, Karperien M, van Blitterswijk CA, Moroni L. Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. J Tissue Eng Regen Med. 2016;10(8):679-689. doi: 10.1002/term.1842
- Ali D, Effect of scaffold architecture on cell seeding efficiency: A discrete phase model CFD analysis. Comput Biol Med. 2019;109:62-69. doi: 10.1016/j.compbiomed.2019.04.025
- Pilarek M, Grabowska I, Ciemerych MA, Dąbkowska K, Szewczyk KW. Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett. 2013;35(9):1387-1394. doi: 10.1007/s10529-013-1218-2
- Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv. 2015;5(99):80956-80966. doi: 10.1039/C5RA15208A
- Ogu CC, Maxa JL, Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent). 2000;13(4):421-423. doi: 10.1080/08998280.2000.11927719
- Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883-891. doi: 10.1124/dmd.30.8.883
- Bara JJ, Guilak F. Chapter 10—Engineering functional tissues: In vitro culture parameters, in Principles of Tissue Engineering (Fifth Edition), R Lanza, R Langer, J P Vacanti, et al. Eds, Mary Ann Liebert, Inc. Academic Press. 2020; 157-177.
- 73. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2008;15(4):913-921. doi: 10.1089/ten.tea.2008.0109