AccScience Publishing / IJB / Volume 9 / Issue 1 / DOI: 10.18063/ijb.v9i1.632
Cite this article
80
Download
1119
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Engineering bio-inks for 3D bioprinting cell mechanical microenvironment

Yanshen Yang1,2 Yuanbo Jia1,2 Qingzhen Yang1,2 Feng Xu1,2*
Show Less
1 The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P.R. China
2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P.R. China
Submitted: 21 June 2022 | Accepted: 29 August 2022 | Published: 29 October 2022
(This article belongs to the Special Issue 3D Printing in Tissue Engineering--Call for Papers )
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) bioprinting has become a promising approach to construct­ing functional biomimetic tissues for tissue engineering and regenerative medicine. In 3D bioprinting, bio-inks are essential for the construction of cell microenviron­ment, thus affecting the biomimetic design and regenerative efficiency. Mechanical properties are one of the essential aspects of microenvironment, which can be char­acterized by matrix stiffness, viscoelasticity, topography, and dynamic mechanical stimulation. With the recent advances in functional biomaterials, various engineered bio-inks have realized the possibility of engineering cell mechanical microenviron­ment in vivo. In this review, we summarize the critical mechanical cues of cell micro­environments, review the engineered bio-inks while focusing on the selection princi­ples for constructing cell mechanical microenvironments, and discuss the challenges facing this field and the possible solutions for them.

Keywords
Biofabrication
Mechanical microenvironment
Bioprinting
Bio-inks
References

1. Song H-HG, Rumma RT, Ozaki CK, et al., 2018, Vascular tissue engineering: Progress, challenges, and clinical promise. Cell Stem Cell, 22(3): 340–354. 
2. Khademhosseini A, Langer R, 2016, A decade of progress in tissue engineering. Nat Protoc, 11(10): 1775–1781. 
3. Zhang P, Zhang C, Li J, et al., 2019, The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther, 10(1): 327. 
4. Xing F, Li L, Zhou C, et al., 2019, Regulation and directing stem cell fate by tissue engineering functional microenvironments: Scaffold physical and chemical cues. Stem Cells Int, 2019: 2180925. 
5. Agrawal A, Suryakumar G, Rathor R, 2018, Role of defective Ca2+ signaling in skeletal muscle weakness: Pharmacological implications, J Cell Commun Signal, 12(4): 645–659. 
6. Vandenburgh HH, 1987, Motion into mass: How does tension stimulate muscle growth? Med Sci Sports Exerc, 19(5): S142–9. 
7. Emon B, Bauer J, Jain Yasna, et al., 2018, Biophysics of tumor microenvironment and cancer metastasis—A mini review. Comput Struct Biotechnol J, 16: 279–287. 
8. Mierke CT, 2019, The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep Prog Phys, 82(6): 64602. 
9. Engler AJ, Sen S, Sweeney HL, et al., 2006, Matrix elasticity directs stem cell lineage specification. Cell, 126(4): 677–689. 
10. Qiu Y, Ciciliano J, Myers DR, et al., 2015, Platelets and physics: How platelets “feel” and respond to their mechanical microenvironment. Blood Rev, 29(6): 377–386. 
11. Fontoura JC, Viezzer C, Santos FGDS, et al., 2020, Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Sci Eng App, 107: 110264. 
12. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater, 3(2): 144–156. 
13. Yang H, Yang K-H, Narayan RJ, et al., 2021, Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research. Essays Biochem, 65(3): 409–416. 
14. Ouyang L, 2022, Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol, 40(7): 891–902. 
15. Felipe-Mendes C, Ruiz-Rubio L, Vilas-Vilela JL, 2020, Biomaterials obtained by photopolymerization: From UV to two photon. Emerg Mater, 3(4): 453–468. 
16. Dey M, Ozbolat IT, 2020, 3D bioprinting of cells, tissues and organs, Sci Rep. 10(1): 14023. 
17. Janmey PA, 1998, The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol Rev, 78(3): 763–781. 
18. Fletcher DA, Mullins RD, 2010, Cell mechanics and the cytoskeleton. Nature, 463(7280): 485–492. 
19. Fishkind DJ, Wang Y-l, 1995, New horizons for cytokinesis. Curr Opin Cell Biol, 7(1): 23–31. 
20. Stossel TP, 1994, The machinery of cell crawling. Sci Am, 271(3): 54–55, 58–63. 
21. Damania D, Subramanian H, Tiwari AK, et al., 2010, Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture, Biophys J, 99(3): 989–996. 
22. Janmey P, 1995, Structure and Dynamics of Membranes, Elsevier Sci, North Holland, 114–717. 
23. Dupont S, Morsut L, Aragona M, et al., 2011, Role of YAP/ TAZ in mechanotransduction. Nature, 474(7350): 179–183. 
24. Owens DJ, Messéant J, Moog S, et al., 2020, Lamin-related congenital muscular dystrophy alters mechanical signaling and skeletal muscle growth. Int J Mol Sci, 22(1): 306. 
25. Parreno J, Raju S, Wu P-H, et al., 2017, MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes. Mat Bio J Intl Soc Mat Bio, 62: 3–14. 
26. Kim N-G, Koh E, Chen X, et al., 2011, E-cadherin mediates contact inhibition of proliferation through hippo signaling-pathway components. Proc Natl Acad Sci USA, 108(29): 11930–11935. 
27. Rando TA, 2001, The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Musl Nerve, 24(12): 1575–1594. 
28. Guimarães CF, Gasperini L, Marques AP, et al., 2020, The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater, 5(5): 351–370. 
29. Rho JY, Ashman RB, Turner CH, 1993, Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J Biomech, 26(2): 111–119. 
30. Sotres J, Jankovskaja S, Wannerberger K, et al., 2017, Ex-vivo force spectroscopy of intestinal mucosa reveals the mechanical properties of mucus blankets. Sci Rep, 7(1): 7270. 
31. Masuzaki R, Tateishi R, Yoshida H, et al., 2007, Assessing liver tumor stiffness by transient elastography. Hepatol Int, 1(3): 394–397. 
32. Darling EM, Topel M, Zauscher S, et al., 2008, Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech, 41(2): 454–464.
33. Banaszkiewicz PA, Kader DF, 2014, The compressive behavior of bone as a two-phase porous structure, in Classic Papers in Orthopaedics, Springer, London, 457–460. 
34. Hayashi K, Iwata M, 2015, Stiffness of cancer cells measured with an AFM indentation method. J Mech Behav Biomed Mater, 49: 105–111. 
35. Yousafzai MS, Coceano G, Bonin S, et al., 2017, Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers. J Biomech, 60: 266–269. 
36. Milovanovic P, Potocnik J, Djonic D, et al., 2012, Age-related deterioration in trabecular bone mechanical properties at material level: Nanoindentation study of the femoral neck in women by using AFM. Exp Gerontol, 47(2): 154–159. 
37. Gentili C, Cancedda R, 2009, Cartilage and bone extracellular matrix. Curr Pharm Design, 15(12): 1334–1348. 
38. Najafi M, Farhood B, Mortezaee K, 2019, Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem, 120(3): 2782–2790. 
39. Berdyyeva TK, Woodworth CD, Sokolov I, 2005, Human epithelial cells increase their rigidity with ageing in vitro: Direct measurements. Phys Med Biol, 50(1): 81–92. 
40. Kato S, Espinoza N, Lange S, et al., 2008, Characterization and phenotypic variation with passage number of cultured human endometrial adenocarcinoma cells. Tissue Cell, 40(2): 95–102. 
41. Kiricuta IC, Simplăceanu V, 1975, Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res, 35(5): 1164–1167. 
42. Dhume RY, Barocas VH, 2019, Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension. Acta Biomater, 87: 245–255. 
43. Chaudhuri O, Gu L, Klumpers D, et al., 2016, Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater, 15(3): 326–334. 
44. Chaudhuri O, Gu L, Darnell M, et al., 2015, Substrate stress relaxation regulates cell spreading. Nat Comm, 6: 6364. 
45. Adebowale K, Gong Z, Hou JC, et al., 2021, Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat Mater, 20(9): 1290–1299. 
46. Magdalena D, Michał W, Christopher BA, 2019, The effect of a stylus tip on roundness deviation with different roughness. Adv Manuf II, 147–157. 
47. Smith JR, Breakspear S, Campbell SA, 2003, AFM in surface finishing: Part II. Surface roughness. Trans IMF, 81(3): B55-B58. 
48. Yilbas Z, Hasmi MSJ, 1999, Surface roughness measurement using an optical system, J Mater Process Technol, 88(1-3): 10–22. 
49. Hameed NA, Ali IM, Hassun HK, 2019, Calculating surface roughness for a large scale SEM images by mean of image processing. Energy Procedia, 157: 84–89. 
50. Anselme K, Bigerelle M, 2011, Role of materials surface topography on mammalian cell response. Int Mater Rev, 56(4): 243–266. 
51. Hersel U, Dahmen C, Kessler H, 2003, RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24(24): 4385–4415. 
52. Carvalho JL, Miranda de Goes A, Gomes DA, et al., 2013, Innovative Strategies for Tissue Engineering, INTECH Open Access Publisher. London, United Kingdom, 295–313. 
53. Kim D-H, Lipke EA, Kim P, et al. 2010, Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA, 107(2): 565–570. 
54. Fujita S, Ohshima M, Iwata H, 2009, Time-lapse observation of cell alignment on nanogrooved patterns. J R Soc Interface, 6 Suppl(3): S269–77. 
55. Tatsumi R, Sheehan SM, Iwasaki H, et al., 2001, Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res, 267(1): 107–114. 
56. Albro MB, Nims RJ, Cigan AD, et al., 2013, Accumulation of exogenous activated TGF-β in the superficial zone of articular cartilage. Biophys J, 104(8): 1794–1804. 
57. Wong VW, Levi K, Akaishi S, et al., 2012, Scar zones: Region-specific differences in skin tension may determine incisional scar formation. Plast Reconst Surg, 129(6): 1272–1276. 
58. Storm C, Pastore JJ, MacKintosh FC, et al., 2005, Nonlinear elasticity in biological gels. Nature, 435(7039): 191–194. 
59. Heyes CD, Groll J, Möller M, et al., 2007, Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces. Mol Biosyst, 3(6): 419–430. 
60. Al-Nimry S, Dayah AA, Hasan I, et al., 2021, Cosmetic, biomedical and pharmaceutical applications of fish gelatin/ hydrolysates. Marine Drugs, 19(3): 145. 
61. Franchi M, Trirè A, Quaranta M, et al., 2007, Collagen structure of tendon relates to function. Sci World J, 7: 404–420. 
62. Soofi SS, Last JA, Liliensiek SJ, et al., 2009, The elastic modulus of matrigel as determined by atomic force microscopy. J Struct Biol, 167(3): 216–219. 
63. Bassani F, 2005, Encyclopedia of Condensed Matter Physics, Elsevier. Cambridge, Massachusetts, United States, 103–105. 
64. Salam Hamdy MA, Abu-Thabit NY, 2018, Stimuli-responsive biopolymer nanocarriers for drug delivery applications. Types Triggers, 1: 405–432. 
65. Tilak D, Yimin Q, 2016, Medical Textile Materials, Woodhead Publishing. Sawston, Cambridge, United Kingdom, 31–33. 
66. Vieira AC, Vieira JC, Guedes RM, et al., 2010, Degradation and viscoelastic properties of PLA-PCL, PGA-PCL, PDO and PGA Fibres. Mater Sci Forum, 636–637: 825–832. 
67. Hodgskinson R, Currey JD, Evans GP, 1989, Hardness, an indicator of the mechanical competence of cancellous bone. J Orthop Res, 7(5): 754–758.
68. Wu Y, Xiang Y, Fang J, et al., 2019, The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Biosci Rep, 39(1): BSR20181748. 
69. Elkhoury K, Morsink M, Tahri Y, et al., 2021, Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources. Int J Biol Macromol, 183: 918–926. 
70. Duan B, Kapetanovic E, Hockaday LA, et al., 2014, Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater, 10(5): 1836–1846. 
71. Subramani R, Izquierdo-Alvarez A, Bhattacharya P, et al., 2020, The influence of swelling on elastic properties of polyacrylamide hydrogels. Front Mater, 7: 212. 
72. Li Z, Liu Z, Ng TY, et al., 2020, The effect of water content on the elastic modulus and fracture energy of hydrogel. Extreme Mech Lett, 35: 100617. 
73. Wu F, Pang Y, Liu J, 2020, Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat Commun, 11(1): 4502. 
74. Islam MR, Virag J, Oyen ML, 2020, Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues. J Biomech, 113: 110090. 
75. Kuzucu M, Vera G, Beaumont M, et al., 2021, Extrusion-based 3D bioprinting of gradients of stiffness, cell density, and immobilized peptide using thermogelling hydrogels. ACS Biomater Sci Eng, 7(6): 2192–2197. 
76. Wang M, Li W, Mille LS, et al., 2022, Digital light processing based bioprinting with composable gradients. Adv Mater, 34(1): e2107038. 
77. Prendergast ME, Davidson MD, Burdick JA, 2021, A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 13(4): 044108. 
78. Swartz MA, Tschumperlin DJ, Kamm RD, et al., 2001, Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc Natl Acad Sci USA, 98(11): 6180–6185. 
79. Li X, Tsutsui Y, Matsunaga T, et al., 2011, Precise control and prediction of hydrogel degradation behavior. Macromolecules, 44(9): 3567–3571. 
80. Lou J, Stowers R, Nam S, et al., 2018, Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials, 154: 213–222. 
81. Nam S, Stowers R, Lou J, et al., 2019, Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials, 200: 15–24. 
82. Yang Q, Gao B, Xu F, 2020, Recent advances in 4D bioprinting. Biotechnol J, 15(1): e1900086. 
83. Jing Y, Yang B, Yuan W, et al., 2021, Dynamic cell-adaptable hydrogels with a moderate level of elasticity promote 3D development of encapsulated cells. Appl Mater Today, 22: 100892. 
84. Arani A, Arunachalam SP, Chang IC, et al., 2017, Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging, 46(5): 1361–1367. 
85. Domian IJ, Yu H, Mittal N, 2017, On materials for cardiac tissue engineering. Adv Healthc Mater, 6(2): 1600768. 
86. Marinelli JP, Levin DL, Vassallo R, et al., 2017, Quantitative assessment of lung stiffness in patients with interstitial lung disease using MR elastography. Adv Healthc Mater, 46(2): 365–374. 
87. Mariappan YK, Glaser KJ, Levin DL, et al., 2014, Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography. J Magn Reson Imaging, 40(5): 1230–1237. 
88. Booth AJ, Hadley R, Cornett AM, et al., 2012, Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care, 186(9): 866–876. 
89. Cha SW, Jeong WK, Kim Y, et al., 2014, Nondiseased liver stiffness measured by shear wave elastography: A pilot study. J Med Ultrasound, 33(1): 53–60. 
90. Ling W, Lu Q, Lu C, et al., 2014, Effects of vascularity and differentiation of hepatocellular carcinoma on tumor and liver stiffness: In vivo and in vitro studies. Ultrasound Med Biol, 40(4): 739–746. 
91. Yeh W-C, Li P-C, Jeng Y-M, et al., 2002, Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol, 28(4): 467–474. 
92. Lee DH, Lee JM, Han JK, et al., 2013, MR elastography of healthy liver parenchyma: Normal value and reliability of the liver stiffness value measurement. J Magn Reson Imaging, 38(5): 1215–1223. 
93. Venkatesh SK, Wang G, Teo LL, et al., 2014, Magnetic resonance elastography of liver in healthy Asians: Normal liver stiffness quantification and reproducibility assessment. J Magn Reson Imaging, 39(1): 1–8. 
94. Johnson B, Campbell S, Campbell-Kyureghyan N, 2021, Characterizing the material properties of the kidney and liver in unconfined compression and probing protocols with special reference to varying strain rate. Biomechanics, 1(2): 264–280. 
95. Pozzi R, Parzanese I, Baccarin A, et al., 2017, Point shear-wave elastography in chronic pancreatitis: A promising tool for staging disease severity. Pancreatology, 17(6): 905–910. 
96. An H, Shi Y, Guo Q, et al., 2016, Test-retest reliability of 3D EPI MR elastography of the pancreas. Clin Radiol, 71(10): 1068.e7–1068.e12. 
97. Gou M, Zheng M, Zhao Y, et al., 2017, Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization. Appl Surf Sci, 416: 273–280. 
98. DeKosky BJ, Dormer NH, Ingavle GC, et al., 2010, Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C Methods, 16(6): 1533–1542. 
99. Lanasa SM, Hoffecker IT, Bryant SJ, 2011, Presence of pores and hydrogel composition influence tensile properties of scaffolds fabricated from well-defined sphere templates. J Biomed Mater Res Part B Appl Bio Mater, 96(2): 294–302. 
100. Gunn JW, Turner SD, Mann BK, 2005, Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res Part A, 72(1): 91–97. 
101. Alam K, Umer J, Iqbal M, et al., 2020, Measurements of elastic properties of biological hydrogels using atomic force microscopy. J Phys Conf Series, 1455(1): 12012. 
102. Yin J, Yan M, Wang Y, et al., 2018, 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces, 10(8): 6849–6857. 
103. West ER, Xu M, Woodruff TK, et al., 2007, Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials, 28(30): 4439–4448. 
104. Alcaraz J, Mori H, Ghajar CM, et al., 2011, Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening. Integr Biol, 3(12): 1153–1166.

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing