AccScience Publishing / IJB / Volume 10 / Issue 5 / DOI: 10.36922/ijb.3366
REVIEW

In situ bioprinting: Tailored printing strategies for regenerative medicine

Chengwei Hu1,2 Chenmin Wang1 Shaoquan Bian1 Weichen Qi3,4 Bo Liu1 Liangliang Wang1 Chunyi Wen5 Jun Wu3,6* William W. Lu1,3 Xiaoli Zhao1,2*
Show Less
1 Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy Sciences, Shenzhen, Guangdong, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Department of Orthopaedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
4 Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
5 Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
6 Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
IJB 2024, 10(5), 3366 https://doi.org/10.36922/ijb.3366
Submitted: 4 April 2024 | Accepted: 17 May 2024 | Published: 24 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In recent years, three-dimensional (3D) bioprinting has emerged as a revolutionary biological manufacturing technology. Despite significant progress, current bioprinting technologies face critical barriers, such as the need for in vitro maturation of printed tissues before implantation and challenges of prefabricated structures not matching the defect shapes. In situ bioprinting has been introduced to address these challenges by printing customized structures to the wound shape via direct deposition of biological inks at the tissue interface. This paper reviews strategies to optimize printing performance for enhanced tissue repair and analyzes the advantages, challenges, and future directions of in situ bioprinting technologies.

Keywords
Bioprinting
In situ bioprinting
Tissue regeneration
Bioinks
Handheld bioprinter
Funding
This work was supported by the National Key Research and Development Program of China (2018YFA0703100), Guangdong Basic and Applied Basic Research Foundation (2021A1515110902, 2021A1515110794), Shenzhen Science and Technology Funding (JCYJ20220530142206014), and the Shanghai Municipal Health Commission Health Industry Clinical Research Program for Youth (20224Y0184).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep. 2017;7(1):9416. doi: 10.1038/s41598-017-10060-3
  2. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting—bioprinting from benchside to bedside? Acta Biomater. 2020;101:14-25. doi: 10.1016/j.actbio.2019.08.045
  3. Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 2015;33(7): 395-400. doi: 10.1016/j.tibtech.2015.04.005
  4. Gatenholm B, Lindahl C, Brittberg M, Simonsson S. Collagen 2A type B induction after 3D bioprinting chondrocytes in situ into osteoarthritic chondral tibial lesion. Cartilage. 2021;13(2_SUPPL):1755S-1769S. doi: 10.1177/1947603520903788
  5. Yang BW, Yin JH, Chen Y, et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv Mater. 2018;30(10):1705611. doi: 10.1002/adma.201705611
  6. Chow T, Wutami I, Lucarelli E, et al. Creating in vitro three-dimensional tumor models: a guide for the biofabrication of a primary osteosarcoma model. Tissue Eng Part B Rev. 2021;27(5):514-529. doi: 10.1089/ten.teb.2020.0254
  7. Li ZH, Zhao Y, Wang ZH, et al. Engineering multifunctional hydrogel-integrated 3D printed bioactive prosthetic interfaces for osteoporotic osseointegration. Adv Healthc Mater. 2022;11(11):e2102535. doi: 10.1002/adhm.202102535
  8. Yvanoff C, Willaert RG. Development of bone cell microarrays in microfluidic chips for studying osteocyte-osteoblast communication under fluid flow mechanical loading. Biofabrication. 2022;14(2):025014. doi: 10.1088/1758-5090/ac516e
  9. Cheng RY, Eylert G, Gariepy J-M, et al. Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns. Biofabrication. 2020;12(2):025002. doi: 10.1088/1758-5090/ab6413
  10. Jiao T, Lian Q, Lian W, et al. Properties of collagen/sodium alginate hydrogels for bioprinting of skin models. J Bionic Eng. 2023;20(1):105-118. doi: 10.1007/s42235-022-00251-8
  11. Liu J, Zhou Z, Zhang M, et al. Simple and robust 3D bioprinting of full-thickness human skin tissue. Bioengineered. 2022;13(4):10087-10097. doi: 10.1080/21655979.2022.2063651
  12. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011
  13. Sithole MN, Kumar P, du Toit LC, et al. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. J Biomed Mater Res Part A. 2018;106(5):1311-1321. doi: 10.1002/jbm.a.36333
  14. Kilian D, Sembdner P, Bretschneider H, et al. 3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design. Bio-Des Manuf. 2021;4(4):818-832. doi: 10.1007/s42242-021-00153-4
  15. Kurzyk A, Szumera-Cieckiewicz A, Miloszewska J, Chechlinska M. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems. Biofabrication. 2024;16(2):025021. doi: 10.1088/1758-5090/ad2b06.
  16. Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a strategy for building in vitro model to study nanoparticle-based minocycline release and cellular protection under oxidative stress. Biofabrication. 2024;16(2):025040. doi: 10.1088/1758-5090/ad30c3
  17. Shukla P, Bera AK, Yeleswarapu S, Pati F. High throughput bioprinting using decellularized adipose tissue-based hydrogels for 3D breast cancer modeling. Macromol Biosci. 2024;24:2400035. doi: 10.1002/mabi.202400035
  18. Wu D, Pang S, Berg J, et al. Bioprinting of perfusable vascularized organ models for drug development via sacrificial-free direct ink writing. Adv Funct Mater. 2024:2314171. doi: 10.1002/adfm.202314171
  19. Gvaramia D, Fisch P, Flegeau K, et al. Evaluation of bioprinted autologous cartilage grafts in an immunocompetent rabbit model. Adv Ther. 2024;7(6):2300441. doi: 10.1002/adtp.202300441
  20. Bhar B, Das E, Manikumar K, Mandal BB. 3D bioprinted human skin model recapitulating native-like tissue maturation and immunocompetence as an advanced platform for skin sensitization assessment. Adv Healthc Mater. 2024;13(15):e2303312. doi: 10.1002/adhm.202303312
  21. Di Buduo CA, Lunghi M, Kuzmenko V, et al. Bioprinting soft 3D models of hematopoiesis using natural silk fibroin-based bioink efficiently supports platelet differentiation. Adv Sci. 2024;11(18):2308276. doi: 10.1002/advs.202308276
  22. Edri S, Frisch AN, Safina D, et al. 3D bioprinting of multicellular stem cell-derived constructs to model pancreatic cell differentiation. Adv Funct Mater. 2024;34:2315488. doi: 10.1002/adfm.202315488
  23. Li H, Cheng F, Orgill DP, Yao J, Zhang YS. Handheld bioprinting strategies for in situ wound dressing. In: Jang J, ed. Essays in Biochemistry. Vol. 65. London: Portland Press; 2021:533-543. doi: 10.1042/EBC20200098
  24. Thai MT, Phan PT, Tran HA, et al. Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv Sci. 2023;10(12):2205656. doi: 10.1002/advs.202205656
  25. Agostinacchio F, Mu X, Dire S, Motta A, Kaplan DL. In situ 3D printing: opportunities with silk inks. Trends Biotechnol. 2021;39(7):719-730. doi: 10.1016/j.tibtech.2020.11.003
  26. Akilbekova D, Mektepbayeva D. Chapter 5-patient specific in situ 3D printing. In: Kalaskar DM, ed. 3D Printing in Medicine. Cambridge: Woodhead Publishing; 2017:91-113. doi: 10.1016/b978-0-08-100717-4.00004-1
  27. Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123-1127. doi: 10.1517/14712598.7.8.1123
  28. Samandari M, Mostafavi A, Quint J, Memic A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40(10): 1229-1247. doi: 10.1016/j.tibtech.2022.03.009
  29. Zhao W, Xu T. Preliminary engineering for in situ in vivo bioprinting: a novel micro bioprinting platform for in situ in vivo bioprinting at a gastric wound site. Biofabrication. 2020;12(4):045020. doi: 10.1088/1758-5090/aba4ff
  30. Nuutila K, Samandari M, Endo Y, et al. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing. Bioact Mater. 2022;8:296-308. doi: 10.1016/j.bioactmat.2021.06.030
  31. Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative bioprinting: repairing tissues and organs in a surgical setting. Trends Biotechnol. 2020;38(6):594-605. doi: 10.1016/j.tibtech.2020.01.004
  32. Chen H, Zhang Y, Zhou D, et al. Mechanical engineering of hair follicle regeneration by in situ bioprinting. Biomater Adv. 2022;142:213127. doi: 10.1016/j.bioadv.2022.213127
  33. Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5(9):686-705. doi: 10.1038/s41578-020-0209-x
  34. Levin AA, Karalkin PA, V. Koudan E, et al. Commercial articulated collaborative in situ 3D bioprinter for skin wound healing. Int J Bioprint. 2023;9(2):380-393. doi: 10.18063/ijb.v9i2.675
  35. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2021;30:75-84. doi: 10.1016/j.jare.2020.11.011
  36. Moncal KK, Gudapati H, Godzik KP, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction. Adv Funct Mater. 2021;31(29):2010858. doi: 10.1002/adfm.202010858
  37. Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9(1):1856 doi: 10.1038/s41598-018-38366-w
  38. Zhao W, Hu C, Xu T, et al. Subaqueous bioprinting: a novel strategy for fetal membrane repair with 7-axis robot-assisted minimally invasive surgery. Adv Funct Mater. 2022;32(51):2207496. doi: 10.1002/adfm.202207496
  39. Christensen K, Compaan A, Chai W, Xia G, Huang Y. In situ printing-then-mixing for biological structure fabrication using intersecting jets. ACS Biomater Sci Eng. 2017;3(12):3687-3694. doi: 10.1021/acsbiomaterials.7b00752
  40. Keriquel V, Oliveira H, Remy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
  41. Kerouredan O, Hakobyan D, Remy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication. 2019;11(4):045002. doi: 10.1088/1758-5090/ab2620
  42. Ding H, Chang RC. Simulating image-guided in situ bioprinting of a skin graft onto a phantom burn wound bed. Addit Manuf. 2018;22:708-719. doi: 10.1016/j.addma.2018.06.022
  43. Liu Y, Luo X, Wu W, et al. Dual cure (thermal/photo) composite hydrogel derived from chitosan/collagen for in situ 3D bioprinting. Int J Biol Macromol. 2021;182:689-700. doi: 10.1016/j.ijbiomac.2021.04.058
  44. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020;6(23):eaba7406. doi: 10.1126/sciadv.aba7406
  45. Urciuolo A, Poli I, Brandolino L, et al. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020;4(9):901-915. doi: 10.1038/s41551-020-0568-z
  46. Chen H, Zhang H, Shen Y, et al. Instant in-situ tissue repair by biodegradable PLA/gelatin nanofibrous membrane using a 3D printed handheld electrospinning device. Front Bioeng Biotechnol. 2021;9:684105. doi: 10.3389/fbioe.2021.684105
  47. Tianyuan Y, Yi Z, Zhian J, Yuanyuan L. A novel handheld device: application to in situ bioprinting compound dressing for the treatment of wound. Paper presented at: Journal of Physics: Conference Series; 2021. doi: 10.1088/1742-6596/1965/1/012059
  48. Li X, Lian Q, Li DC, Xin H, Jia SH. Development of a robotic arm based hydrogel additive manufacturing system for in-situ printing. Appl Sci. 2017;7(1):73. doi: 10.3390/app7010073
  49. Keriquel V, Guillemot F, Arnault I, et al. In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101. doi: 10.1088/1758-5082/2/1/014101
  50. Zhu Z, Guo S-Z, Hirdler T, et al. 3D printed functional and biological materials on moving freeform surfaces. Adv Mater. 2018;30(23):e1707495. doi: 10.1002/adma.201707495
  51. Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication. 2020;12(4):045006. doi: 10.1088/1758-5090/ab97a1
  52. Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792-802. doi: 10.5966/sctm.2012-0088
  53. Russell CS, Mostafavi A, Quint JP, et al. In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries. ACS Appl Bio Mater. 2020;3(3):1568-1579. doi: 10.1021/acsabm.9b01176
  54. Quint JP, Mostafavi A, Endo Y, et al. In vivo printing of nanoenabled scaffolds for the treatment of skeletal muscle injuries. Adv Healthc Mater. 2021;10(10):e2002152. doi: 10.1002/adhm.202002152
  55. Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med. 2018;12(3):611-621. doi: 10.1002/term.2476
  56. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep. 2017;7(1):5837. doi: 10.1038/s41598-017-05699-x
  57. Onofrillo C, Duchi S, O’Connell CD, et al. Biofabrication of human articular cartilage: a path towards the development of a clinical treatment. Biofabrication. 2018;10(4):045006. doi: 10.1088/1758-5090/aad8d9
  58. Mostafavi A, Abdullah T, Russell CS, et al. In situ printing of scaffolds for reconstruction of bone defects. Acta Biomater. 2021;127:313-326. doi: 10.1016/j.actbio.2021.03.009
  59. Campos DFD, Zhang S, Kreimendahl F, et al. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration. Connect Tissue Res. 2020;61(2):205-215. doi: 10.1080/03008207.2019.1640217
  60. Zhou C, Yang Y, Wang J, et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat Commun. 2021;12(1):5072. doi: 10.1038/s41467-021-25386-w
  61. Abdelrahim AA, Hong S, Song JM. Integrative in situ photodynamic therapy-induced cell death measurement of 3D-bioprinted MCF-7 tumor spheroids. Anal Chem. 2022;94(40):13936-13943. doi: 10.1021/acs.analchem.2c03022
  62. Chaudhry MS, Czekanski A. Surface slicing and toolpath planning for in-situ bioprinting of skin implants. Biofabrication. 2024;16(2):025030. doi: 10.1088/1758-5090/ad30c4
  63. Zhao M, Wang J, Zhang J, et al. Functionalizing multi-component bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing. Mater Today Bio. 2022;16:100334. doi: 10.1016/j.mtbio.2022.100334
  64. Liu X, Wang X, Zhang L, et al. 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Adv Healthcare Mater. 2021;10(23):e2101405. doi: 10.1002/adhm.202101405
  65. Zhao W, Chen H, Zhang Y, et al. Adaptive multi-degree-of-freedom in situ bioprinting robot for hair-follicle-inclusive skin repair: A preliminary study conducted in mice. Bioeng Transl Med. 2022;7(3):e10303. doi: 10.1002/btm2.10303
  66. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res. 2020;23:123-132. doi: 10.1016/j.jare.2020.01.010
  67. Al-Kharusi G, Dunne NJ, Little S, Levingstone TJ. The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research. Bioengineering (Basel). 2022;9(10):561. doi: 10.3390/bioengineering9100561
  68. Albouy M, Desanlis A, Brosset S, et al. A preliminary study for an intraoperative 3D bioprinting treatment of severe burn injuries. Plast Reconstr Surg Glob Open. 2022;10(1):e4056. doi: 10.1097/GOX.0000000000004056
  69. Chen H, Ma X, Gao T, et al. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Biomed Pharmacother. 2023;158:114140. doi: 10.1016/j.biopha.2022.114140
  70. Simeunovic A, Wolf K, Tierling K, Hoelzle DJ. A surgical robot for intracorporeal additive manufacturing of tissue engineering constructs. IEEE Rob Autom Lett. 2022;7(3):7495-7502. doi: 10.1109/LRA.2022.3183752
  71. Fortunato GM, Sigismondi S, Nicoletta M, et al. Analysis of the robotic-based in situ bioprinting workflow for the regeneration of damaged tissues through a case study. Bioengineering (Basel). 2023;10(5):560. doi: 10.3390/bioengineering10050560
  72. Colosi C, Costantini M, Barbetta A, Dentini M. Microfluidic bioprinting of heterogeneous 3D tissue constructs. Methods Mol Biol. 2017;1612:369-380. doi: 10.1007/978-1-4939-7021-6_26
  73. Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with bioconcrete bioink. Nat Commun. 2022;13(1):3597. doi: 10.1038/s41467-022-30997-y
  74. Shi E, Lou L, Warburton L, Rubinsky B. Three-dimensional printing in combined cartesian and curvilinear coordinates. J Med Device. 2022;16(4):044502. doi: 10.1115/1.4055064
  75. Fortunato GM, Batoni E, Pasqua I, et al. Automatic photo-cross-linking system for robotic-based in situ bioprinting. ACS Biomater Sci Eng. 2023;9(12):6926-6934. doi: 10.1021/acsbiomaterials.3c00898
  76. Kucukdeger E, Johnson BN. Closed-loop controlled conformal 3D printing on moving objects via tool-localized object position sensing. J Manuf Processes. 2023;89:39-49. doi: 10.1016/j.jmapro.2023.01.020.
  77. Yang S, Wang L, Chen Q, Xu M. In situ process monitoring and automated multi-parameter evaluation using optical coherence tomography during extrusion-based bioprinting. Addit Manuf. 2021;47:102251. doi: 10.1016/j.addma.2021.102251
  78. Yang S, Chen Q, Wang L, Xu M. In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int J Bioprint. 2023;9(1):47-62. doi: 10.18063/ijb.v9i1.624
  79. Tashman JW, Shiwarski DJ, Coffin B, et al. In situ volumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography. Biofabrication. 2023;15(1):014102. doi: 10.1088/1758-5090/ac975e
  80. Kerouredan O, Ribot E, Fricain J-C, Devillard R, Miraux S. Magnetic resonance imaging for tracking cellular patterns obtained by laser-assisted bioprinting. Sci Rep. 2018;8(1):15777. doi: 10.1038/s41598-018-34226-9
  81. Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid prototyping in the air and in-situ mild polymerization for 3D bioprinting. Biofabrication. 2021;13(4):045026. doi: 10.1088/1758-5090/ac23e4
  82. Kotlarz M, Ferreira AM, Gentile P, Russell SJ, Dalgarno K. Droplet-based bioprinting enables the fabrication of cell-hydrogel-microfibre composite tissue precursors. Bio-Des Manuf. 2022;5(3):512-528. doi: 10.1007/s42242-022-00192-5
  83. Zhao D-k, Xu H-q, Yin J, Yang H-y. Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J Zhejiang Univ Sci A. 2022;23(12):955-973. doi: 10.1631/2023.A2200569
  84. Limon SM, Quigley C, Sarah R, Habib A. Advancing scaffold porosity through a machine learning framework in extrusion based 3D bioprinting. Front Mater. 2024;10:1337485. doi: 10.3389/fmats.2023.1337485
  85. Qiao Q, Zhang X, Yan Z, et al. The use of machine learning to predict the effects of cryoprotective agents on the GelMA-based bioinks used in extrusion cryobioprinting. Bio-Des Manuf. 2023;6(4):464-477. doi: 10.1007/s42242-023-00244-4
  86. Huang X, Ng WL, Yeong WY. Predicting the number of printed cells during inkjet-based bioprinting process based on droplet velocity profile using machine learning approaches. J Intell Manuf. 2023;35(5). doi: 10.1007/s10845-023-02167-4
  87. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter for multi-material printing of complex constructs. Biofabrication. 2023;15(3):035012. doi: 10.1088/1758-5090/acc42c.
  88. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip. 2018;18(10):1440-1451. doi: 10.1039/c7lc01236e.
  89. Zhou FY, Xin LJ, Wang SY, et al. Portable handheld “SkinPen” loaded with biomaterial ink for in situ wound healing. ACS Appl Mater Interfaces. 2023;15(23):27568-27585. doi: 10.1021/acsami.3c02825
  90. Ying G, Manriquez J, Wu D, et al. An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing. Mater Today Bio. 2020;8:100074. doi: 10.1016/j.mtbio.2020.100074
  91. Mostafavi A, Samandari M, Karvar M, et al. Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration. Appl Phys Rev. 2021;8(4):041415. doi: 10.1063/5.0062823
  92. Shi Y, Tang S, Yuan X, et al. In situ 4D printing of polyelectrolyte/magnetic composites for sutureless gastric perforation sealing. Adv Mater. 2023;36:2307601. doi: 10.1002/adma.202307601
  93. Yang Y, Yu Z, Lu X, et al. Minimally invasive bioprinting for in situ liver regeneration. Bioact Mater. 2023;26:465-477. doi: 10.1016/j.bioactmat.2023.03.011
  94. Debbi L, Machour M, Dahis D, et al. Ultrasound mediated polymerization for cell delivery, drug delivery, and 3D printing. Small Methods. 2024:2301197. doi: 10.1002/smtd.202301197
  95. Zhao W, Hu C, Lin S, et al. A closed-loop minimally invasive 3D printing strategy with robust trocar identification and adaptive alignment. Addit Manuf. 2023;73:103701. doi: 10.1016/j.addma.2023.103701
  96. Goker M, Derici US, Gokyer S, et al. Spatial growth factor delivery for 3D bioprinting of vascularized bone with adipose-derived stem/stromal cells as a single cell source. ACS Biomater Sci Eng. 2024;10(3):1607-1619. doi: 10.1021/acsbiomaterials.3c01222
  97. Enrico A, Voulgaris D, Ostmans R, et al. 3D microvascularized tissue models by laser-based cavitation molding of collagen. Adv Mater. 2022;34(11):e2109823. doi: 10.1002/adma.202109823
  98. Hu Y, Xiong Y, Zhu Y, et al. Copper-epigallocatechin gallate enhances therapeutic effects of 3D-printed dermal scaffolds in mitigating diabetic wound scarring. ACS Appl Mater Interfaces. 2023;15(32):38230-38246. doi: 10.1021/acsami.3c04733
  99. Lu S, Wang X, Li W, Zu Y, Xiao J. Injectable 3D-printed porous scaffolds for adipose stem cell delivery and endometrial regeneration. Adv Funct Mater. 2023;33(34): 2303368. doi: 10.1002/adfm.202303368
  100. Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM. Void-free 3D bioprinting for in situ endothelialization and microfluidic perfusion. Adv Funct Mater. 2020;30(1):1908349. doi: 10.1002/adfm.201908349
  101. Muhammad M, Willems C, Rodriguez-Fernandez J, Gallego-Ferrer G, Groth T. Synthesis and characterization of oxidized polysaccharides for in situ forming hydrogels. Biomolecules. 2020;10(8):1185. doi: 10.3390/biom10081185
  102. Baptista M, Joukhdar H, Alcala-Orozco CR, et al. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering. Biomater Sci. 2020;8(24):7093-7105. doi: 10.1039/d0bm01010c
  103. Chen X, Ranjan VD, Liu S, et al. In situ formation of 3D conductive and cell-laden graphene hydrogel for electrically regulating cellular behavior. Macromol Biosci. 2021;21(4):e2000374. doi: 10.1002/mabi.202000374
  104. Li C, Faulkner-Jones A, Dun AR, et al. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed. 2015;54(13):3957-3961. doi: 10.1002/anie.201411383
  105. Moeinzadeh S, Park Y, Lin S, Yang YP. In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery. Materialia (Oxf). 2021;15:100954. doi: 10.1016/j.mtla.2020.100954
  106. Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height. Bio-Des Manuf. 2019;2(3):172-180. doi: 10.1007/s42242-019-00043-w
  107. Handral HK, Natu VP, Cao T, et al. Emerging trends and prospects of electroconductive bioinks for cell-laden and functional 3D bioprinting. Bio-Des Manuf. 2022;5(2): 396-411. doi: 10.1007/s42242-021-00169-w
  108. Lai S, Wu T, Shi C, et al. Triple-layered core-shell fiber dressings with enduring platelet conservation and sustained growth factor release abilities for chronic wound healing. Regener Biomater. 2024;11:rbae034. doi: 10.1093/rb/rbae034
  109. Kang MS, Kwon M, Lee SY, et al. In situ crosslinkable collagen-based hydrogels for 3D printing of dermis-mimetic constructs. ECS J Solid State Sci Technol. 2022;11(4): 045014. doi: 10.1149/2162-8777/ac6897
  110. Kang MS, Kang JI, Thi PL, et al. Three-dimensional printable gelatin hydrogels incorporating graphene oxide to enable spontaneous myogenic differentiation. ACS Macro Lett. 2021;10(4):426-432. doi: 10.1021/acsmacrolett.0c00845
  111. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018;30(27):e1800242. doi: 10.1002/adma.201800242
  112. Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater. 2021;8:57-70. doi: 10.1016/j.bioactmat.2021.06.031
  113. Jalandhra GK, Molley TG, Hung T-t, Roohani I, Kilian KA. In situ formation of osteochondral interfaces through “bone-ink” printing in tailored microgel suspensions. Acta Biomater. 2023;156:75-87. doi: 10.1016/j.actbio.2022.08.052
  114. de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties. Adv Funct Mater. 2019;29(51):1906330. doi: 10.1002/adfm.201906330
  115. Li C, Wang J, Yang W, et al. 3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon repair in a rat model of tendinopathy. J Nanobiotechnol. 2023;21(1):177. doi: 10.1186/s12951-023-01892-5
  116. Li J, Huang Y, Song J, et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater. 2018;79:202-215. doi: 10.1016/j.actbio.2018.08.029
  117. Blaeser A, Million N, Campos DFD, et al. Laser-based in situ embedding of metal nanoparticles into bioextruded alginate hydrogel tubes enhances human endothelial cell adhesion. Nano Res. 2016;9(11):3407-3427. doi: 10.1007/s12274-016-1218-3
  118. Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian A. Three-dimensional bioprinting of tragacanth/ hydroxyapaptite modified alginate bioinks for bone tissue engineering with tunable printability and bioactivity. J Appl Polym Sci. 2022;139(36):e52833. doi: 10.1002/app.52833
  119. Bandyopadhyay A, Mandal BB, Bhardwaj N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. J Biomed Mater Res Part A. 2022;110(4):884-898. doi: 10.1002/jbm.a.37336
  120. Zhang M, Qian T, Deng Z, Hang F. 3D printed double-network alginate hydrogels containing polyphosphate for bioenergetics and bone regeneration. Int J Biol Macromol. 2021;188:639-648. doi: 10.1016/j.ijbiomac.2021.08.066
  121. Koo Y, Kim G. New strategy for enhancing in situ cell viability of cell-printing process via piezoelectric transducer-assisted three-dimensional printing. Biofabrication. 2016;8(2):025010. doi: 10.1088/1758-5090/8/2/025010
  122. Krishnadoss V, Kanjilal B, Masoumi A, et al. Programmable bio-ionic liquid functionalized hydrogels for in situ 3D bioprinting of electronics at the tissue interface. Mater Today Adv. 2023;17:100352. doi: 10.1016/j.mtadv.2023.100352
  123. Yin J, Zhao D, Liu J. Trends on physical understanding of bioink printability. Bio-Des Manuf. 2019;2(1):50-54. doi: 10.1007/s42242-019-00033-y
  124. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research (Wash D C). 2022;2022:9794745. doi: 10.34133/2022/9794745
  125. Hann SY, Cui H, Esworthy T, Zhang LG. 4D thermo-responsive smart hiPSC-CM cardiac construct for myocardial cell therapy. Int J Nanomed. 2023;18:1809-1821. doi: 10.2147/IJN.S402855
  126. Joshi A, Choudhury S, Baghel VS, et al. 4D printed programmable shape-morphing hydrogels as intraoperative self-folding nerve conduits for sutureless neurorrhaphy. Adv Healthcare Mater. 2023;12(24):e2300701. doi: 10.1002/adhm.202300701
  127. Liu B, Li H, Meng F, et al. 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat Commun. 2024;15(1):1587. doi: 10.1038/s41467-024-45938-0
  128. Luo K, Wang L, Wang M-X, et al. 4D printing of biocompatible scaffolds via in situ photo-crosslinking from shape memory copolyesters. ACS Appl Mater Interfaces. 2023;15(37):44373-44383. doi: 10.1021/acsami.3c10747
  129. Li W, Wang M, Mille LS, et al. A smartphone-enabled portable digital light processing 3D printer. Adv Mater. 2021;33(35):2102153. doi: 10.1002/adma.202102153
  130. Warth N, Berg M, Schumacher L, et al. Bioprint FirstAid: a handheld bioprinter for first aid utilization on space exploration missions. Acta Astronaut. 2024;215:194-204. doi: 10.1016/j.actaastro.2023.11.033
  131. Tomooka Y, Spothelfer D, Puiggali-Jou A, et al. Minimally invasive in situ bioprinting using tube-based material transfer. at - Automatisierungstechnik. 2023;71(7):562-571. doi: 10.1515/auto-2023-0060

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing