AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.1413
RESEARCH ARTICLE

Decellularized porcine kidney-incorporated hydrogels for cell-laden bioprinting of renal cell carcinoma model

Miaoben Wu1,2† Hangyu Zhou2† Jingying Hu2 Zonghuan Wang3 Yongqi Xu2 Yibing Wu1 Yang Xiang1 Jun Yin4 Peng Wei1 Kailei Xu5,6* Tiantian Ren7*
Show Less
1 Department of Plastic and reconstructive surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
2 Health Science Center, Ningbo University, Ningbo, Zhejiang, China
3 Department of Medical Research Center, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
4 The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
5 Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
6 Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
7 Department of Trauma Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
IJB 2024, 10(2), 1413 https://doi.org/10.36922/ijb.1413
Submitted: 29 July 2023 | Accepted: 18 October 2023 | Published: 12 January 2024
(This article belongs to the Special Issue 3D Bioprinting for Tumor Modeling)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

More than 90% of kidney cancers are attributed to renal cell carcinoma (RCC), which is however highly resistant to traditional chemotherapy. The challenges met in treating RCC signify an imperative to accelerate the development of new and effective drugs. Preclinical testing has served as a foundation for evaluating potential effectiveness of new drugs, but this endeavor is deeply restricted by the current generation of in vitro two-dimensional culture models, which cannot accurately mimic the tumor microenvironment (TME). Therefore, new in vitro three-dimensional (3D) cell culture models that can better mimic the components and architecture of TME have been developed for preclinical testing, but only a few existing 3D cell culture models can simulate the TME of RCC, representing a limitative obstacle impeding the development of novel drugs for RCC. In this study, we prepared a bioink by mixing porcine kidney decellularized extracellular matrix (dECM) powders with gelatin methacryloyl (GelMA) to bioprint an in vitro 3D cell culture model for RCC. We found that GelMA stability, mechanical properties, and printability were all significantly improved following the addition of the dECM powder. Moreover, cell cultures using ACHN cells suggested that kidney dECM powders significantly improved the cellular proliferation and metastasis via upregulation of markers related to epithelial– mesenchymal transition, along with activation of several cancer progression-related signaling pathways. More importantly, ACHN cells also demonstrated higher resistance to sunitinib under the stimulation of kidney dECM, indicating that GelMA-kidney dECM hydrogels may be an appropriate preclinical model to be used for building an in vitro RCC platform for drug screening and development.

Keywords
Tumor microenvironment
Gelatin methacrylate
3D culture
Tumor model
Drug screening
Funding
This study was partly funded by the National Natural Science Foundation of China (Grant No. 12202387), the Natural Science Foundation of Zhejiang Province (Grant No. BY23H180015), the Natural Science Foundation of Ningbo (Grant Nos. 2022J216, 2022J212), the Foundation of Ningbo Science and Technology Bureau (Grant No. 2023Z193), Ningbo Medical Science and Technology Program (Grant No. 2020Y73), and the Zhejiang Medical Science and Technology Project (Grant No. 2020KY825).
References
  1. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74-84. doi: 10.1016/j.eururo.2018.08.036
  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. doi: 10.3322/caac.21708
  3. Safiri S, Kolahi AA, Mansournia MA, et al. The burden of kidney cancer and its attributable risk factors in 195 countries and territories, 1990-2017. Sci Rep. 2020;10(1):13862. doi: 10.1038/s41598-020-70840-2
  4. Makhov P, Joshi S, Ghatalia P, et al. Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and management strategies. Mol Cancer Therap. 2018;17(7): 1355-1364. doi: 10.1158/1535-7163.MCT-17-1299
  5. Nerich V, Hugues M, Paillard MJ, et al. Clinical impact of targeted therapies in patients with metastatic clear-cell renal cell carcinoma. Onco Targets Ther. 2014;7:365-374. doi: 10.2147/OTT.S56370
  6. Goyal R, Gersbach E, Yang XJ, Rohan SM. Differential diagnosis of renal tumors with clear cytoplasm: Clinical relevance of renal tumor subclassification in the era of targeted therapies and personalized medicine. Arch Pathol Lab Med. 2013;137(4):467-480. doi: 10.5858/arpa.2012-0085-RA
  7. Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015;368(1):7-13. doi: 10.1016/j.canlet.2015.07.039
  8. Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245-261. doi: 10.1038/s41581-020-00359-2
  9. Vuong L, Kotecha RR, Voss MH, Hakimi AA. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov. 2019;9(10):1349-1357. doi: 10.1158/2159-8290.CD-19-0499
  10. Meszaros M, Yusenko M, Domonkos L, Peterfi L, Kovacs G, Banyai D. Expression of TXNIP is associated with angiogenesis and postoperative relapse of conventional renal cell carcinoma. Sci Rep. 2021;11(1):17200. doi: 10.1038/s41598-021-96220-y
  11. Li S, Huang C, Hu G, et al. Tumor-educated B cells promote renal cancer metastasis via inducing the IL-1β/HIF-2α/ Notch1 signals. Cell Death Dis. 2020;11(3):163. doi: 10.1038/s41419-020-2355-x
  12. Frantz C, Stewart K, Weaver V. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195-4200. doi: 10.1242/jcs.023820
  13. Majo S, Courtois S, Souleyreau W, Bikfalvi A, Auguste P. Impact of extracellular matrix components to renal cell carcinoma behavior. Front Oncol. 2020;10:625. doi: 10.3389/fonc.2020.00625
  14. Afify A, Purnell P, Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol. 2009;86(2):95-100. doi: 10.1016/j.yexmp.2008.12.003
  15. Theocharis A. Versican in health and disease. Connect Tissue Res. 2008;49(3):230-234. doi: 10.1080/03008200802147571
  16. Marinkovich M. Tumour microenvironment: Laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007;7(5): 370-380. doi: 10.1038/nrc2089
  17. Astrof S, Hynes R. Fibronectins in vascular morphogenesis. Angiogenesis. 2009;12(2):165-175. doi: 10.1007/s10456-009-9136-6
  18. Hielscher A, Ellis K, Qiu C, Porterfield J, Gerecht S. Fibronectin deposition participates in extracellular matrix assembly and vascular morphogenesis. PloS One. 2016;11(1): e0147600. doi: 10.1371/journal.pone.0147600
  19. Unal A, West J. Synthetic ECM: Bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug Chem. 2020;31(10):2253-2271. doi: 10.1021/acs.bioconjchem.0c00270
  20. Kabirian F, Mozafari M. Decellularized ECM-derived bioinks: Prospects for the future. Methods (San Diego, Calif.). 2020;171:108-118. doi: 10.1016/j.ymeth.2019.04.019
  21. Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P. In vitro 3D cultures to model the tumor microenvironment. Cancers (Basel). 2021;13(12).doi: 10.3390/cancers13122970
  22. Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D cell culture systems: Tumor application, advantages, and disadvantages. Int J Mol Sci. 2021;22(22). doi: 10.3390/ijms222212200
  23. Monteiro M, Gaspar V, Ferreira L, Mano J. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci. 2020;8(7):1855-1864. doi: 10.1039/c9bm02075f
  24. Pan T, Fong EL, Martinez M, et al. Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Lett. 2015;365(1):89-95. doi: 10.1016/j.canlet.2015.05.019
  25. Maliszewska-Olejniczak K, Brodaczewska KK, Bielecka ZF, et al. Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells. Cytotechnology. 2019;71(1):149-163. doi: 10.1007/s10616-018-0273-x
  26. Liu K, Cui JJ, Zhan Y, et al. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer. 2022;21(1):98-121. doi: 10.1186/s12943-022-01561-5
  27. Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: The architectural event of therapy resistance and metastasis. Mol Cancer. 2022;21(1):225-250. doi: 10.1186/s12943-022-01682-x
  28. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15-31. doi: 10.1016/j.bioactmat.2021.09.014
  29. Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther. 2021;18:88-96. doi: 10.1016/j.reth.2021.04.002
  30. Yue K, Trujillo-de Santiago G, Alvarez M, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  31. Wang F, Zhang R, Gao N, et al. Coagulation-anticoagulation-regulable and tough extracellular matrix hydrogels. Compos Part B: Eng. 2022;239: 109938. doi: 10.1016/j.compositesb.2022.109938
  32. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10(8):6849-6857. doi: 10.1021/acsami.7b16059
  33. Li Y, Mao Q, Yin J, Wang Y, Fu J, Huang Y. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit Manuf. 2021;37. doi: 10.1016/j.addma.2020.101716
  34. Habib A, Sathish V, Mallik S, Khoda B. 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials (Basel). 2018;11(3). doi: 10.3390/ma11030454
  35. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016; 8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  36. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene effect of surface and dispersion characteristics. Biomacromolecules. 2005;6:2732-2739. doi: 10.1021/bm050222v
  37. Shin MK, Spinks GM, Shin SR, Kim SI, Kim S. Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater. 2009;21:1712-1715. doi: 10.1002/adma.200802205
  38. Huang K, Gu Z, Wu J. Tofu-incorporated hydrogels for potential bone regeneration. ACS Biomater Sci Eng. 2020;6(5): 3037-3045. doi: 10.1021/acsbiomaterials.9b01997
  39. Gao C, Sow WT, Wang Y, et al. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications. J Mater Chem B. 2021;9(8):2033-2041. doi: 10.1039/d0tb02588g
  40. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2): 69-84. doi: 10.1038/s41580-018-0080-4
  41. Feng D, Gao P, Henley N, et al. SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis. 2022;13(7): 639-654. doi: 10.1038/s41419-022-05059-2
  42. Zhong M, Zhu M, Liu Y, et al. TNFAIP8 promotes the migration of clear cell renal cell carcinoma by regulating the EMT. J Cancer. 2020;11(10):3061-3071. doi: 10.7150/jca.40191
  43. Mikami S, Katsube K, Oya M, et al. Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab Invest. 2011;91(10):1443-1458. doi: 10.1038/labinvest.2011.111
  44. Liu W, Liu Y, Liu H, Zhang W, An H, Xu J. Snail predicts recurrence and survival of patients with localized clear cell renal cell carcinoma after surgical resection. Urol Oncol. 2015;33(2):69e61-10. doi: 10.1016/j.urolonc.2014.08.003
  45. Harada K, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial-mesenchymal transition markers in renal cell carcinoma: Impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int. 2012;110 (11 Pt C):E1131-1137. doi: 10.1111/j.1464-410X.2012.11297.x
  46. Rasti A, Madjd Z, Abolhasani M, et al. Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma. Clin Exp Med. 2018;18(2):177-190. doi: 10.1007/s10238-017-0481-2
  47. Kugler A, Hemmerlein B, Thelen P, Kallerhoff M, Radzun HJ, Ringert RH. Expression of metalloproteinase 2 and 9 and their inhibitors in renal cell carcinoma. J Urol. 1998;160(5):1914-1918. doi: 10.1016/s0022-5347(01)62443-1
  48. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;89(17):1260-1270. doi: 10.1093/jnci/89.17.1260
  49. Xu H, Xu W-H, Ren F, et al. Prognostic value of epithelial-mesenchymal transition markers in clear cell renal cell carcinoma. Aging. 2020;12(1):866-883. doi: 10.18632/aging.102660
  50. Sugimoto M, Kohashi K, Itsumi M, et al. Epithelial to mesenchymal transition in clear cell renal cell carcinoma with rhabdoid features. Pathobiology. 2016;83(6):277-286. doi: 10.1159/000445752
  51. Li X, Ma X, Chen L, et al. Prognostic value of CD44 expression in renal cell carcinoma: A systematic review and meta-analysis. Sci Rep. 2015;5:13157. doi: 10.1038/srep13157
  52. Yao JX, Chen X,. Zhu YJ, Wang H, Hu XY, Guo JM. Prognostic value of vimentin is associated with immunosuppression in metastatic renal cell carcinoma. Front Oncol. 2020;10:1181-1190. doi: 10.3389/fonc.2020.01181
  53. Fiedorowicz M, Khan MI, Strzemecki D, et al. Renal carcinoma CD105-/CD44- cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep. 2020;10(1):5379. doi: 10.1038/s41598-020-62205-6
  54. Katagiri A, Watanabe R, Tomita Y. E-cadherin expression in renal cell cancer and its significance in metastasis and survival. Br J Cancer. 1995;71(2):376-379. doi: 10.1038/bjc.1995.76
  55. Tani T, Laitinen L, Kangas L, Lehto VP, Virtanen I. Expression of E- and N-cadherin in renal cell carcinomas, in renal cell carcinoma cell lines in vitro and in their xenografts. Int J Cancer. 1995;64(6):407-414. doi: 10.1002/ijc.2910640610
  56. Gao K, Zhang F, Chen K, et al. Expression patterns and prognostic value of RUNX genes in kidney cancer. Sci Rep. 2021;11(1):14934. doi: 10.1038/s41598-021-94294-2
  57. Rooney N, Mason SM, McDonald L, et al. RUNX1 is a driver of renal cell carcinoma correlating with clinical outcome. Cancer Res. 2020;80(11):2325-2339. doi: 10.1158/0008-5472.CAN-19-3870
  58. Gong D, Zhang J, Chen Y, et al. The m(6)A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca(2+) influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. J Exp Clin Cancer Res. 2019;38(1):233-249. doi: 10.1186/s13046-019-1223-y
  59. Ranzuglia V, Lorenzon I, Pellarin I, et al. Serum- and glucocorticoid- inducible kinase 2, SGK2, is a novel autophagy regulator and modulates platinum drugs response in cancer cells. Oncogene. 2020;39(40): 6370-6386. doi: 10.1038/s41388-020-01433-6
  60. Pao AC. SGK regulation of renal sodium transport. Curr Opin Nephrol Hypertens. 2012;21(5):534-540. doi: 10.1097/MNH.0b013e32835571be
  61. Liu Y, Chen J-B, Zhang M, et al. SGK2 promotes renal cancer progression via enhancing ERK 1-2 and AKT phosphorylation. Eur Rev Med Pharmacol Sci. 2019;23(7):2756-2767. doi: 10.26355/eurrev_201904_17549
  62. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221(2):125-138. doi: 10.1002/path.2689
  63. Bostrom AK, Lindgren D, Johansson ME, Axelson H. Effects of TGF-beta signaling in clear cell renal cell carcinoma cells. Biochem Biophys Res Commun. 2013;435(1):126-133. doi: 10.1016/j.bbrc.2013.04.054
  64. Ma L, Li Y, Wu Y, et al. The construction of in vitro tumor models based on 3D bioprinting. Bio-Des Manuf. 2020;3(3):227-236. doi: 10.1007/s42242-020-00068-6
  65. Xu K, Huang Y, Wu M, Yin J, Wei P. 3D bioprinting of multi-cellular tumor microenvironment for prostate cancer metastasis. Biofabrication. 2023;15(3):035020. doi: 10.1088/1758-5090/acd960
  66. Xu K, Han Y, Huang Y, Wei P, Yin J, Jiang J. The application of 3D bioprinting in urological diseases. Mater Today Bio. 2022;16:100388. doi: 10.1016/j.mtbio.2022.100388
  67. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: Establishment, evaluation and anti-cancer drug testing. Biofabrication. 2020;12(4):045014. doi: 10.1088/1758-5090/aba0c3
  68. Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265: 120416. doi: 10.1016/j.biomaterials.2020.120416
Conflict of interest
The authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position of the authors in this paper.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing