AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0164

Development of a 3D-printable matrix using cellulose microfibrils/guar gum-based hydrogels and its post-printing antioxidant activity

Olajide Emmanuel Adedeji1 Ju Hyun Min2 Gi Eon Park2 Hye Jee Kang2 Ji-Young Choi3 Mariam Omowunmi Aminu2 Ocheme Boniface Ocheme4 Seon-Tea Joo5 Kwang-Deog Moon2 Young Hoon Jung2*
Show Less
1 Department of Food Science and Technology, Federal University Wukari, PMB 1020 Wukari, Nigeria
2 School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
3 Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
4 Department of Food Science and Technology, Federal University of Technology, PMB 65 Minna, Nigeria
5 Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea
IJB 2024, 10(1), 0164
Submitted: 25 May 2023 | Accepted: 26 June 2023 | Published: 8 August 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

A biomaterial ink suitable for three-dimensional (3D) printing was developed using cellulose microfibrils (CMFs, 1% w/v) and guar gum (1–7 g/100 mL CMFs), and the post-printing stability and antioxidant functionality of the borax-treated construct were investigated. Rheological analysis, Fourier transform infrared spectrometry, X-ray diffractometry, and scanning electron microscopy revealed the suitability of the two polymers to form an interpenetrating composite hydrogel that would facilitate printability. The produced composite hydrogel showed good structural, morphological, thermal, and textural properties. CMFs with 5% guar gum showing optimal surface properties and rheological properties were printed with the least dimensional errors at 50% infill density, 10 mm/s printing speed, 0.8 mm nozzle diameter, and 0.5 mm layer height. The treatment with borax showed good shape fidelity during 12 h storage. The treated construct also showed considerably increased mechanical properties and antioxidant activities in comparison with the untreated construct. A stable 3D construct suitable for a variety of applications could be produced using CMFs and guar gum-based ink.

Cellulose microfibril
Guar gum
3D printing
Antioxidant activity
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant no. 321028-5). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by Korea government (Ministry of Science and ICT, MSIT; No. 2020R1C1C1005251).
  1. Fatimi A, Okoro OV, Podstawczyk D, et al. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review. Gels. 2022;8(3):179. doi: 10.3390/gels8030179
  2. Nocheseda CJC, Liza FP, Collera AKM, et al. 3D printing of metals using biodegradable cellulose hydrogel inks. Addit Manuf. 2021;48(Part A):102380. doi: 10.1016/j.addma.2021.102380
  3. Hong S, Purushothama B, Song JM. Printing-based assay and therapy of antioxidans. Antioxidants. 2020;9(11):1052. doi: 10.3390/antiox9111052
  4. Cleymand F, Poerio A, Mamanov A, et al. Development of novel chitosan / guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties. Bioprinting. 2021;21:e00122. doi: 10.1016/j.bprint.2020.e00122
  5. Dai L, Cheng T, Wang Y, et al. Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose. 2019;26:6891–6901. doi: 10.1007/s10570-019-02579-7
  6. Ee LY, Li SFY. Recent advances in 3D printing of nanocellulose: Structure, preparation, and application prospects. Nanoscale Adv. 2021;3(5):1167–1208. doi: 10.1039/D0NA00408A
  7. Leppiniemi J, Lahtinen P, Paajanen A, et al. 3D-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater. 2017;9(26):21959–21970. doi: 10.1021/acsami.7b02756
  8. Firmanda A, Syamsu K, Sari YW, et al. 3D printed cellulose based product applications. Mater Chem Front. 2022;6(3):254–279. doi: 10.1039/D1QM00390A
  9. Mohan D, Teong ZK, Sajab MS, et al. Intact fibrillated 3D-printed cellulose macrofibrils/CaCO3 for controlled drug delivery. Polymers. 2021;13(12):1912. doi: 10.3390/polym13121912
  10. Xu W, Wang X, Sandler N, et al. Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications. ACS Sustain Chem Eng. 2018;6(5):5663–5680. doi: 10.1021/acssuschemeng.7b03924
  11. Gao G, Du G, Sun Y, et al. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces. 2015;7(8):5029–5037. doi: 10.1021/acsami.5b00704
  12. Erb RM, Sander JS, Grisch R, et al. Self-shaping composites with programmable bioinspired microstructures. Nat Commun. 2013;4(1):1712. doi: 10.1038/ncomms2666
  13. Palem RR, Kummara MR, Kang TJ. Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydr Polym. 2019;223:115074. doi: 10.1016/j.carbpol.2019.115074
  14. Pugliese R, Gelain F. Characterization of elastic, thermo-responsive, self-healable supramolecular hydrogel made of self-assembly peptides and guar gum. Mater Des. 2020;186:108370. doi: 10.1016/j.matdes.2019.108370
  15. Thombare N, Jha U, Mishra S, et al. Guar gum as a promising starting material for diverse applications: A review. Int J Biol Macromol. 2016;88:361–372. doi: 10.1016/j.ijbiomac.2016.04.001
  16. Venkatesan J, Kim S, Anil S, (eds.), et al. Guar gum nanoparticles: A new paradigm in biomedical applications, in Polysaccharide Nanoparticles: Preparation and Biomedical Applications, Elsevier Inc., Amsterdam, Netherlands. 2022;119–143.
  17. Pan X, Wang Q, Ning D, et al. Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater Sci Eng. 2018;4(9):3397−3404. doi: 10.1021/acsbiomaterials.8b00657
  18. Li N, Liu C, Chen W. Facile access to guar gum based supramolecular hydrogels with rapid self-healing ability and multistimuli responsive gel−sol transitions. J Agric Food Chem. 2019;67(2):746−752. doi: 10.1021/acs.jafc.8b05130
  19. Buj-Corral I, Bagheri A, Sivatte-Adroer M. Effect of printing parameters on dimensional error, surface roughness and porosity of FFF printed parts with grid structure. Polymers. 2021;13(8):1213. doi: 10.3390/polym13081213
  20. Velásquez-Cock J, Ganán P, Posada P, et al. Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Ind Crops Prod. 2016;85:1–10. doi: 10.1016/j.indcrop.2016.02.036
  21. Jang JH, So BR, Yeo HJ, et al. Preparation of cellulose microfibril (CMF) from Gelidium amansii and feasibility of CMF as a cosmetic ingredient. Carbohydr Polym. 2021;257:117569. doi: 10.1016/j.carbpol.2020.117569
  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2):248–254. doi: 10.1016/0003-2697(76)90527-3
  23. Lu B, Lin F, Jiang X, et al. One-pot assembly of microfibrillated cellulose reinforced PVA−borax hydrogels with self-healing and pH-responsive properties. ACS Sustain Chem Eng. 2017;5(1):948−956. doi: 10.1021/acssuschemeng.6b02279
  24. Chegini SP, Varshosaz J, Sadeghi HM, et al. Shear sensitive injectable hydrogels of cross-linked tragacanthic acid for ocular drug delivery: Rheological and biological evaluation. Int J Biol Macromol. 2020;165:2789–2804. doi: 10.1016/j.ijbiomac.2020.10.164
  25. Hamdani AM, Wani IA. Guar and locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterization. Bioact Carbohydr Diet Fibre. 2017;11:53–59. doi: 10.1016/j.bcdf.2017.07.004
  26. Feki A, Hamdi M, Jaballi I, et al. Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohydr Polym. 2016;236:116046. doi: 10.1016/j.carbpol.2020.116046
  27. Varanasi S, He R, Batchelor W. Estimation of cellulose nanofiber aspect ratio from measurements of fibre suspension gel point. Cellulose. 2013;20:1885–1896. doi: 10.1007/s10570-013-9972-9
  28. Martínez J, Morillo E, Maqueda C, et al. Ethyl cellulose polymer microspheres for controlled release of norfluazon. Pest Manag Sci. 2001;57(8):688–694. doi: 10.1002/ps.339
  29. Ng HM, Sin LT, Tee TT, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng. 2015;75:176–200. doi: 10.1016/j.compositesb.2015.01.008
  30. Aguayo MG, Pérez AF, Reyes G, et al. Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers. 2018;10(10):1145. doi: 10.3390/polym10101145
  31. Mecozzi M, Sturchio E. Effects of essential oil treatments on the secondary protein structure of Vicia faba: A mid-infrared spectroscopic study supported by two-dimensional correlation analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:90–98. doi: 10.1016/j.saa.2014.08.020
  32. Horikawa Y, Clair B, Sugiyama J. Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose. 2008;16:1–8. doi: 10.1007/s10570-008-9252-2
  33. Cao X, Dingb B, Yub J, et al. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym. 2012;90(2):1075–1080. doi: 10.1016/j.carbpol.2012.06.046
  34. Baniasadi H, Madani Z, Ajdary R, et al. Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater Sci Eng C. 2021;130:112424. doi: 10.1016/j.msec.2021.112424
  35. Lundahl MJ, Berta M, Ago M, et al. Shear and extensional rheology of aqueous suspensions of cellulose nanofibrils for biopolymer-assisted filament spinning. Eur Polym J. 2018;109:367–378. doi: 10.1016/j.eurpolymj.2018.10.006
  36. Tanpichai S, Phoothong F, Boonmahitthisud A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep. 2022;12(1):8920. doi: 10.1038/s41598-022-12688-2
  37. Jena DK, Sahoo PK. Simultaneous improvement of mechanical and fire retardantproperties of synthesised biodegradable guar gum-g-poly(butyl acrylate)/montmorillonite nanocomposite. Polym Degrad Stab. 2018;31(10):37–45. doi: 10.1016/j.polymdegradstab.2018.05.020
  38. Kayra N, Koraltan YP, Aytekin AO. Hydrogels based on cellulose nanocomposites, in Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, Giri TK, Ghosh B (eds.), Woodhead Publishing, Cambridge, UK, 2021;471–505.
  39. Bang WY, Kim DH, Kang MD, et al. Addition of various cellulosic components to bacterial nanocellulose: A comparison of surface qualities and crystalline properties. J Microbiol Biotechnol. 2021;31(10):1366–1372. doi: 10.4014/jmb.2106.06068
  40. Ray D, Rana AK, Bose NR, et al. Effect of guar-gum treatment on mechanical properties of vinyl ester resin matrix composites reinforced with jute yarns. J Appl Polym Sci. 2005;98(2):557–563. doi: 10.1002/app.21995
  41. Martín-Alfonso J, Cuadri A, Berta M, et al. Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions. Carbohydr Polym. 2018;181:63–70. doi: 10.1016/j.carbpol.2017.10.057
  42. Herrada-Manchon H, Rodríguez-González DD, Fernández MA, et al. 3D printed gummies: Personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687. doi: 10.1016/j.ijpharm.2020.119687
  43. Kuo CC, Qin H, Cheng Y, et al. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocoll. 2021;111:106262. doi: 10.1016/j.foodhyd.2020.106262
  44. Triyono J, Sukanto H, Saputra RM, et al. The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 2020;10(1):762–768. doi: 10.1515/eng-2020-0083
  45. Czyżewski P, Marciniak D, Nowinka B, et al. Influence of extruder’s nozzle diameter on the improvement of functional properties of 3D-printed PLA products. Polymers. 2022;14(2): 356. doi: 10.3390/polym14020356
  46. Adedeji OE, Choi J-Y, Park GE, et al. Formulation and characterization of an interpenetrating network hydrogel of locust bean gum and cellulose microfibrils for 3D printing. Innov Food Sci Emerg Technol. 2022;80:103086. doi: 10.1016/j.ifset.2022.103086
  47. Thombare N, Jha U, Mishra S, et al. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr Polym. 2017;168:274–281. doi: 10.1016/j.carbpol.2017.03.086
  48. Kundu S, Abdullah MF, Das A, et al. Antifungal ouzo nanoparticles from guar gum propionate. RSC Adv. 2016;6(108):108. doi: 106563-106571.
  49. Goel N, Sinha N, Kumar B. Growth and properties of sodium tetraborate decahydrate single crystals. Mater Res Bul. 2013;48(4):1632–1636. doi: 10.1016/j.materresbull.2013.01.007
  50. Wang Y, Pan S, Hou X, et al. Non-centrosymmetric sodium borate: Crystal growth, characterization and properties on Na2B4O12H10. Solid State Sci. 2010;12(10):1726–1730. doi: 10.1016/j.solidstatesciences.2010.07.021
  51. Xia H, Ren M, Zou Y, et al. Novel biocompatible polysaccharide-based eutectogels with tunable rheological, thermal, and mechanical properties: The role of water. Molecules. 2020;25(15):3314. doi: 10.3390/molecules25153314
  52. 52. Chen J, Yang J, Ma L, et al. Structure-antioxidant activity relationship of methoxy, phenolic, hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2022; 10(1):2611. doi: 10.1038/s41598-020-59451-z
Conflict of interest
The authors declare no conflicts of interest.
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing