AccScience Publishing / IJAMD / Online First / DOI: 10.36922/IJAMD025210016
REVIEW ARTICLE

A comprehensive review of artificial intelligence applications in composite materials: Predictive, generative, and automation approaches

Hyunsoo Hong1 Samuel Kim1 Jeeeun Lee1 Seong Su Kim1*
Show Less
1 Department of Mechanical Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
Received: 19 May 2025 | Revised: 2 July 2025 | Accepted: 15 July 2025 | Published online: 4 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The rapid advancement of artificial intelligence (AI) has led to its widespread adoption across various engineering fields, including composite materials research. Composite materials, known for their superior mechanical properties and lightweight characteristics, play a crucial role in industries such as aerospace, automotive, and robotics. However, their inherent complexity–such as anisotropic behavior, nonlinear characteristics, and intricate microstructures–poses significant challenges for traditional design and analysis methods. To address these challenges, AI-driven approaches have emerged as powerful tools, offering solutions in prediction, generation, and automation. This review systematically explores applications of machine learning and deep learning in composite materials research, categorized into three major approaches: predictive, generative, and automation models. Predictive models enhance the accuracy of property prediction and microstructure analysis. Generative models facilitate novel material discovery and microstructure design. Automatic models improve quality control and can be used to optimize manufacturing processes through real-time data analysis. By leveraging diverse large-scale datasets, AI provides innovative solutions to the key challenges associated with composite materials and enhances research and design efficiency. This review highlights the transformative potential of AI in composite materials research, providing insights into future research directions and challenges.

Keywords
Composite
Artificial intelligence
Prediction
Generation
Automation
Manufacturing
Funding
This research was supported by the Nano & Material Technology Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (No. RS-2024-00450477). This work was supported by the National R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (RS- 2023-00260461).
Conflict of interest
Seong Su Kim is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge. Nature. 2017;550(7676):354-359. doi: 10.1038/nature24270

 

  1. Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484-489. doi: 10.1038/nature16961

 

  1. Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Adv Neural Inf Process Syst. 2020;33:1877-1901.

 

  1. Bai Y, Kadavath S, Kundu S, et al. Constitutional AI: Harmlessness From AI Feedback. [arXiv Preprint]; 2022.

 

  1. Grigorescu S, Trasnea B, Cocias T, Macesanu G. A survey of deep learning techniques for autonomous driving. J Field Robot. 2020;37(3):362-386. doi: 10.1002/rob.21918

 

  1. Holzinger A, Keiblinger K, Holub P, Zatloukal K, Müller H. AI for life: Trends in artificial intelligence for biotechnology. N Biotechnol. 2023;74:16-24. doi: 10.1016/j.nbt.2023.02.001

 

  1. Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn Robot. 2023;3:54-70. doi: 10.1016/j.cogr.2023.04.001

 

  1. Brunton SL, Nathan Kutz J, Manohar K, et al. Data-driven aerospace engineering: Reframing the industry with machine learning. Aiaa J. 2021;59(8):2820-2847. doi: 10.2514/1.J060131

 

  1. Lingitz L, Gallina V, Ansari F, et al. Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer. Procedia CIRP. 2018;72:1051-1056. doi: 10.1016/j.procir.2018.03.148

 

  1. Hong H, Kim S, Kim W, Kim W, Jeong JM, Kim SS. Design optimization of 3D printed kirigami-inspired composite metamaterials for quasi-zero stiffness using deep reinforcement learning integrated with bayesian optimization. Compos Struct. 2025;359:119031. doi: 10.1016/j.compstruct.2025.119031

 

  1. Hong H, Kim W, Kim W, Jeong JM, Kim S, Kim SS. Machine learning-driven design optimization of buckling-induced quasi-zero stiffness metastructures for low-frequency vibration isolation. ACS Appl Mater Interfaces. 2024;16(14):17965-17972. doi: 10.1021/acsami.3c18793

 

  1. Hong H, Jeong KI, On SY, Kim W, Kim SS. Structural optimization of an arch-structured epoxy/rubber composite vibration isolator using deep Q-value neural network reinforcement learning. Compos Struct. 2023;323:117506. doi: 10.1016/j.compstruct.2023.117506

 

  1. Barile C, Casavola C, De Cillis F. Mechanical comparison of new composite materials for aerospace applications. Compos Part B Eng. 2019;162:122-128. doi: 10.1016/j.compositesb.2018.10.101

 

  1. Lee J, Lee D, Park J, Choi I, Lim JW, Kim S. Carbon/epoxy composite foot structure for biped robots. Compos Struct. 2016;140:344-350. doi: 10.1016/j.compstruct.2016.01.022

 

  1. Bank LC. Composites for Construction: Structural Design with FRP Materials. United States: John Wiley and Sons; 2006.

 

  1. Sarfraz MS, Hong H, Kim SS. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos Struct. 2021;266:113864. doi: 10.1016/j.compstruct.2021.113864

 

  1. Mrazova M. Advanced composite materials of the future in aerospace industry. Incas Bull. 2013;5(3):139-50.

 

  1. Galos J, Pattarakunnan K, Best AS, Kyratzis IL, Wang CH, Mouritz AP. Energy storage structural composites with integrated lithium‐ion batteries: A review. Adv Mater Technol. 2021;6(8):2001059. doi: 10.1002/admt.202001059

 

  1. Resor BR. Definition of a 5MW/61.5 m Wind Turbine Blade Reference Model. California: Sandia National Laboratories; 2013.

 

  1. Moein MM, Saradar A, Rahmati K, et al. Predictive models for concrete properties using machine learning and deep learning approaches: A review. J Build Eng. 2023;63:105444. doi: 10.1016/j.jobe.2022.105444

 

  1. Dijkstra M, Luijten E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nat Mater. 2021;20(6):762-773. doi: 10.1038/s41563-021-01014-2

 

  1. Sengar SS, Hasan AB, Kumar S, Carroll F. Generative artificial intelligence: A systematic review and applications. Multimed Tools Appl. 2024;84:1-40. doi: 10.1007/s11042-024-20016-1

 

  1. Sarker IH. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput Sci. 2022;3(2):158. doi: 10.1007/s42979-022-01043-x

 

  1. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717-727. doi: 10.1016/S0731-7085(99)00272-1

 

  1. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon. 2018;4(11):e00938. doi: 10.1016/j.heliyon.2018.e00938

 

  1. Sze V, Chen YH, Yang TJ, Emer JS. Efficient processing of deep neural networks: A tutorial and survey. Proceed IEEE. 2017;105(12):2295-2329. doi: 10.1109/JPROC.2017.2761740

 

  1. Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR. Explaining deep neural networks and beyond: A review of methods and applications. Proceed IEEE. 2021;109(3):247-278. doi: 10.1109/JPROC.2021.3060483

 

  1. Larochelle H, Bengio Y, Louradour J, Lamblin P. Exploring strategies for training deep neural networks. J Mach Learn Res. 2009;10(1):1-40.

 

  1. Hong H, Sarfraz MS, Jeong M, et al. Prediction of ground reaction forces using the artificial neural network from capacitive self-sensing values of composite ankle springs for exo-robots. Compos Struct. 2022;301:116233. doi: 10.1016/j.compstruct.2022.116233

 

  1. Wang W, Wang H, Zhou J, Fan H, Liu X. Machine learning prediction of mechanical properties of braided-textile reinforced tubular structures. Mater Design. 2021;212:110181. doi: 10.1016/j.matdes.2021.110181

 

  1. Ding X, Gu Z, Hou X, Xia M, Ismail Y, Ye J. Effects of defects on the transverse mechanical response of unidirectional fibre-reinforced polymers: DEM simulation and deep learning prediction. Compos Struct. 2023;321:117301. doi: 10.1016/j.compstruct.2023.117301

 

  1. Hong H, Kim W, Kim S, Lee K, Kim SS. Deep transfer learning for efficient and accurate prediction of composite pressure vessel behaviors. Compos Part A Appl Sci Manuf. 2024;186:108413. doi: 10.1016/j.compositesa.2024.108413

 

  1. Zhang Z, Zhou H, Ma J, et al. Space deployable bistable composite structures with C-cross section based on machine learning and multi-objective optimization. Compos Struct. 2022;297:115983. doi: 10.1016/j.compstruct.2022.115983

 

  1. Tao F, Liu X, Du H, Yu W. Learning composite constitutive laws via coupling Abaqus and deep neural network. Compos Struct. 2021;272:114137. doi: 10.1016/j.compstruct.2021.114137

 

  1. Schmidt T, Natarajan DK, Duhovic M, Cassola S, Nuske M, May D. Numerical data generation for building machine learning models for permeability estimation of fibrous structures. Polym Compos. 2025:1-17. doi:10.1002/pc.29768

 

  1. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A Survey on Deep Transfer Learning. Berlin: Springer; 2018. p. 270-279.

 

  1. Long M, Zhu H, Wang J, Jordan MI. Deep Transfer Learning with Joint Adaptation Networks. In: Proceedings of Machine Learning Research; 2017. p. 2208-2217.

 

  1. Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proceed IEEE. 2020;109(1):43-76. doi: 10.1109/JPROC.2019.2955636

 

  1. O’shea K, Nash R. An Introduction to Convolutional Neural Networks. [arXiv Preprint]; 2015. doi: 10.48550/arXiv.1511.08458

 

  1. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging. 2018;9:611-629. doi: 10.1007/s13244-018-0639-9

 

  1. Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018;77:354-377. doi: 10.1016/j.patcog.2017.10.013

 

  1. Rawat W, Wang Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017;29(9):2352-2449. doi: 10.1162/NECO_a_00990

 

  1. Dhillon A, Verma GK. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog Artif Intell. 2020;9(2):85-112. doi: 10.1007/s13748-019-00190-9

 

  1. Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural-network approach. IEEE Trans Neural Netw. 1997;8(1):98-113. doi: 10.1109/72.554195

 

  1. Hong H, Kim W, Lee K, Kim SS. Prediction of stacking angles of fiber-reinforced composite materials using deep learning based on convolutional neural networks. Compos Res. 2023;36(1):48-52.

 

  1. Caglar B, Broggi G, Ali MA, Orgéas L, Michaud V. Deep learning accelerated prediction of the permeability of fibrous microstructures. Compos Part A Appl Sci Manuf. 2022;158:106973. doi: 10.1016/j.compositesa.2022.106973

 

  1. Kojima Y, Hirayama K, Endo K, Harada Y, Muramatsu M. Transfer-learning-aided defect prediction in simply shaped CFRP specimens based on stress distribution obtained from finite element analysis and infrared stress measurement. Compos Part B Eng. 2025;291:111958. doi: 10.1016/j.compositesb.2024.111958

 

  1. Guild F, Summerscales J. Microstructural image analysis applied to fibre composite materials: A review. Composites. 1993;24(5):383-393. doi: 10.1016/0010-4361(93)90246-5

 

  1. D’orazio T, Leo M, Distante A, Guaragnella C, Pianese V, Cavaccini G. Automatic ultrasonic inspection for internal defect detection in composite materials. NDT E Int. 2008;41(2):145-154. doi: 10.1016/j.ndteint.2007.08.001

 

  1. Bhaduri A, Gupta A, Graham-Brady L. Stress field prediction in fiber-reinforced composite materials using a deep learning approach. Compos Part B Eng. 2022;238:109879. doi: 10.1016/j.compositesb.2022.109879

 

  1. Kim DW, Lim JH, Lee S. Prediction and validation of the transverse mechanical behavior of unidirectional composites considering interfacial debonding through convolutional neural networks. Compos Part B Eng. 2021;225:109314. doi: 10.1016/j.compstruct.2020.109314

 

  1. Abueidda DW, Almasri M, Ammourah R, Ravaioli U, Jasiuk IM, Sobh NA. Prediction and optimization of mechanical properties of composites using convolutional neural networks. Compos Struct. 2019;227:111264. doi: 10.1016/j.compstruct.2019.111264

 

  1. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):60. doi: 10.1186/s40537-019-0197-0

 

  1. Mikołajczyk A, Grochowski M. Data Augmentation for Improving Deep Learning in Image Classification Problem. New York: IEEE; 2018. p. 117-122.

 

  1. Shim YB, Lee IY, Park YB. Predicting the material behavior of recycled composites: Experimental analysis and deep learning hybrid approach. Compos Sci Technol. 2024;249:110464. doi: 10.1016/j.compscitech.2024.110464

 

  1. Zhu X, Liu Y, Li J, Wan T, Qin Z. Emotion Classification with Data Augmentation using Generative Adversarial Networks. Berlin: Springer; 2018. p. 349-360.

 

  1. Lata K, Dave M, Nishanth KN. Data Augmentation using Generative Adversarial Network. In: Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE); 2019.

 

  1. Shao S, Wang P, Yan R. Generative adversarial networks for data augmentation in machine fault diagnosis. Comput Ind. 2019;106:85-93. doi: 10.1016/j.compind.2019.01.001

 

  1. Liu C, Xu X, Wu J, Zhu H, Wang C. Deep transfer learning-based damage detection of composite structures by fusing monitoring data with physical mechanism. Eng Appl Artif Intell. 2023;123:106245. doi: 10.1016/j.engappai.2023.106245

 

  1. Xu Y, Weng H, Ju X, et al. A method for predicting mechanical properties of composite microstructure with reduced dataset based on transfer learning. Compos Struct. 2021;275:114444. doi: 10.1016/j.compstruct.2021.114444

 

  1. Yi J, Deng B, Peng F, et al. Study on the parameters optimization of 3D printing continuous carbon fiber-reinforced composites based on CNN and NSGA-II. Compos Part A Appl Sci Manuf. 2025;190:108657. doi: 10.1016/j.compositesa.2024.108657

 

  1. Yu C, Zheng S, Zhao X. A novel version of hierarchical genetic algorithm and its application for hyperparameters optimization in CNN models for structural delamination identification. J Braz Soc Mech Sci Eng. 2024;46(8):462. doi: 10.21203/rs.3.rs-3620270/v1

 

  1. DeMille KJ, Hall R, Leigh JR, Guven I, Spear AD. Materials design using genetic algorithms informed by convolutional neural networks: Application to carbon nanotube bundles. Compos Part B Eng. 2024;286:111751. doi: 10.1016/j.compositesb.2024.111751

 

  1. Liu C, Li X, Ge J, et al. A deep learning framework based on attention mechanism for predicting the mechanical properties and failure mode of embedded wrinkle fiber-reinforced composites. Compos Part A Appl Sci Manuf. 2024;186:108401. doi: 10.1016/j.compositesa.2024.108401

 

  1. Yousefi E, Shiri MB, Rezaei MA, Rezaei S, Band SS, Mosavi A. A novel long-term water absorption and thickness swelling deep learning forecast method for corn husk fiber-polypropylene composite. Case Stud Construct Mater. 2022;17:e01268. doi: 10.1016/j.cscm.2022.e01268

 

  1. Gao H, Zhai Y, Wang T. A deep LSTM-based constitutive model for describing the impact characteristics of concrete-granite composites with different roughness interfaces. Sci Rep. 2024;14(1):29129. doi: 10.1038/s41598-024-80366-6

 

  1. Cheung HL, Mirkhalaf M. A multi-fidelity data-driven model for highly accurate and computationally efficient modeling of short fiber composites. Compos Sci Technol. 2024;246:110359. doi: 10.1016/j.compscitech.2023.110359

 

  1. El Said B. Predicting the non-linear response of composite materials using deep recurrent convolutional neural networks. Int J Solids Struct. 2023;276:112334. doi: 10.1016/j.ijsolstr.2023.112334

 

  1. Maia M, Rocha IB, Kovačević D, Van der Meer F. Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework. Mech Mater. 2024;198:105145. doi: 10.1016/j.mechmat.2024.105145

 

  1. Chen Q, Jia R, Pang S. Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach. Compos Struct. 2021;264:113688. doi: 10.1016/j.compstruct.2021.113688

 

  1. Borkowski L, Skinner T, Chattopadhyay A. Woven ceramic matrix composite surrogate model based on physics-informed recurrent neural network. Compos Struct. 2023;305:116455. doi: 10.1016/j.compstruct.2022.116455

 

  1. Arnold SM, Mital SK, Hearley BL. Stiffness and Fatigue Life Estimator for Polymer Composite Laminates Using Machine Learning. Ohio: Glenn Research Center; 2023.

 

  1. Sun X, Yue L, Yu L, et al. Machine learning-evolutionary algorithm enabled design for 4D-printed active composite structures. Adv Funct Mater. 2022;32(10):2109805. doi: 10.1002/adfm.202109805

 

  1. Friemann J, Dashtbozorg B, Fagerström M, Mirkhalaf SM. A micromechanics‐based recurrent neural networks model for path‐dependent cyclic deformation of short fiber composites. Int J Numer Methods Eng. 2023;124(10):2292-2314. doi: 10.1002/nme.7211

 

  1. Qiu C, Gui Y, Ma J, Song H, Yang J. Machine learning-based determination of Mode II translaminar fracture toughness of composite laminates from simple V-notched shear tests. Compos Part A Appl Sci Manuf. 2024;184:108233. doi: 10.1016/j.compositesa.2024.108233

 

  1. Parida SP, Sahoo S, Jena PC. Prediction of multiple transverse cracks in a composite beam using hybrid RNN-mPSO technique. Proc Inst Mech Engi Part C J Mech Eng Sci. 2024;238(16):7977-7986. doi: 10.1177/09544062241239415

 

  1. Zhang F, Wang L, Ye W, Li Y, Yang F. Ultrasonic lamination defects detection of carbon fiber composite plates based on multilevel LSTM. Compos Struct. 2024;327:117714.

 

  1. Kadri K, Kallel A, Guerard G, et al. Prediction of ductile damage in composite material used in type IV hydrogen tanks by artificial neural network and machine learning with finite element modeling approach. Energy Technol. 2025;13(1):2401045. doi: 10.1002/ente.202401045

 

  1. Ghane E, Fagerström M, Mirkhalaf M. Recurrent Neural Networks and Transfer Learning for Elasto-Plasticity in Woven Composites. [arXiv Preprint]; 2023.

 

  1. Jian Y, Hu P, Zhou Q, et al. A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates. Int J Fatigue. 2025;190:108627. doi: 10.1016/j.ijfatigue.2024.108627

 

  1. Ghane E, Fagerström M, Mirkhalaf M. Multi-fidelity data fusion for inelastic woven composites: Combining recurrent neural networks with transfer learning. Compos Sci Technol. 2025;267:111163. doi: 10.1016/j.compscitech.2025.111163

 

  1. Bahmanpour M, Kalhori H, Li B. A data-driven hybrid recurrent neural network and model-based framework for accurate impact force estimation. Mech Syst Signal Process. 2025;229:112503. doi: 10.1016/j.ymssp.2025.112503

 

  1. Shang T, Ge J, Yang J, Li M, Liang J. Spatiotemporal prediction of surface roughness evolution of C/C composites based on recurrent neural network. Compos Part A Appl Sci Manuf. 2024;186:108429. doi: 10.1016/j.compositesa.2024.108429

 

  1. Truong VH, Le QH, Lee J, Han JW, Tessler A, Nguyen SN. An efficient neural network approach for laminated composite plates using refined zigzag theory. Compos Struct. 2024;348:118476. doi: 10.1016/j.compstruct.2024.118476

 

  1. Du J, Zeng J, Wang H, Ding H, Wang H, Bi Y. Using acoustic emission technique for structural health monitoring of laminate composite: A novel CNN-LSTM framework. Eng Fract Mech. 2024;309:110447. doi: 10.1016/j.engfracmech.2024.110447

 

  1. Kovács N, Maia M, Rocha IB, Furtado C, Camanho PP, Van der Meer FP. Physically Recurrent Neural Networks for computational homogenization of composite materials with microscale debonding. Eur J Mech A Solids. 2025;112:105668. doi: 10.48550/arXiv.2410.13774

 

  1. Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M, Piccialli F. Scientific machine learning through physics-informed neural networks: Where we are and what’s next. J Sci Comput. 2022;92(3):88.

 

  1. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686-707. doi: 10.1016/j.jcp.2018.10.045

 

  1. Lee J, Duhovic M, May D, Allen T, Kelly P. Physics-informed neural networks for real-time simulation of transverse liquid composite moulding processes and permeability measurements. Compos Part A Appl Sci Manuf. 2025;193:108857. doi: 10.1016/j.compositesa.2025.108857

 

  1. Kalimullah NM, Shelke A, Habib A. A probabilistic framework for source localization in anisotropic composite using transfer learning based multi-fidelity physics informed neural network (mfPINN). Mech Syst Signal Process. 2023;197:110360. doi: 10.1016/j.ymssp.2023.110360

 

  1. Würth T, Krauß C, Zimmerling C, Kärger L. Physics-informed neural networks for data-free surrogate modelling and engineering optimization-an example from composite manufacturing. Mater Design. 2023;231:112034. doi: 10.1016/j.matdes.2023.112034

 

  1. Wang X, Kan Q, Petru M, Kang G. Study on the composition-property relationships of basalt fibers based on symbolic regression and physics-informed neural network. Compos Part A Appl Sci Manuf. 2024;185:108324. doi: 10.1016/j.compositesa.2024.108324

 

  1. Meng Q, Li Y, Liu X, Chen G, Hao X. A novel physics-informed neural operator for thermochemical curing analysis of carbon-fibre-reinforced thermosetting composites. Compos Struct. 2023;321:117197. doi: 10.1016/j.compstruct.2023.117197

 

  1. Niaki SA, Haghighat E, Campbell T, Poursartip A, Vaziri R. Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture. Comput Methods Appl Mech Eng. 2021;384:113959.

 

  1. Yuan L, Li J, Wang B, et al. Temperature dynamics and mechanical properties analysis of carbon fiber epoxy composites radiated by nuclear explosion simulated light source. Sci Rep. 2025;15(1):1799. doi: 10.1038/s41598-025-85959-3

 

  1. Wang S, Sankaran S, Wang H, Perdikaris P. An Expert’s Guide to Training Physics-Informed Neural Networks. [arXiv Preprint]; 2023.

 

  1. Fang Z. A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Trans Neural Netw Learn Syst. 2021;33(10):5514-5526. doi: 10.1109/TNNLS.2021.3070878

 

  1. Nascimento RG, Corbetta M, Kulkarni CS, Viana FA. Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis. J Power Sources. 2021;513:230526.

 

  1. Hanna JM, Aguado JV, Comas-Cardona S, Le Guennec Y, Borzacchiello D. A Self-Supervised Learning Framework Based on Physics-Informed and Convolutional Neural Networks to Identify Local Anisotropic Permeability Tensor from Textiles 2D Images for Filling Pattern Prediction. Amsterdam: Elsevier; 2024.

 

  1. Korolev D, Schmidt T, Natarajan DK, et al. Hybrid Machine Learning Based Scale Bridging Framework for Permeability Prediction of Fibrous Structures. [arXiv Preprint]; 2025.

 

  1. Gal Y, Islam R, Ghahramani Z. Deep Bayesian Active Learning with Image Data. In: Proceedings of Machine Learning Research; 2017. p. 1183-92.

 

  1. Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J. Explainable AI: A Brief Survey on History, Research Areas, Approaches and Challenges. Berlin: Springer; 2019. p. 563-574.

 

  1. Dwivedi R, Dave D, Naik H, et al. Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Comput Surv. 2023;55(9):1-33. doi: 10.1145/3561048

 

  1. Yossef M, Noureldin M, Alqabbany A. Explainable artificial intelligence framework for FRP composites design. Compos Struct. 2024;341:118190. doi: 10.1016/j.compstruct.2024.118190

 

  1. Azad MM, Kim HS. An explainable artificial intelligence‐based approach for reliable damage detection in polymer composite structures using deep learning. Polym Compos. 2025;46(2):1536-1551. doi: 10.1002/pc.29055

 

  1. Daghigh V, Ramezani SB, Daghigh H, Lacy TE Jr. Explainable artificial intelligence prediction of defect characterization in composite materials. Compos Sci Technol. 2024;256:110759. doi: 10.3390/asi7060121

 

  1. Song Y, Kim K, Park S, Park SK, Park J. Analysis of load-bearing capacity factors of textile-reinforced mortar using multilayer perceptron and explainable artificial intelligence. Construct Build Mater. 2023;363:129560. doi: 10.1016/j.conbuildmat.2022.129560

 

  1. Kulasooriya W, Ranasinghe R, Perera US, Thisovithan P, Ekanayake I, Meddage D. Modeling strength characteristics of basalt fiber reinforced concrete using multiple explainable machine learning with a graphical user interface. Sci Rep. 2023;13(1):13138. doi: 10.1038/s41598-023-40513-x

 

  1. Meister S, Wermes M, Stüve J, Groves RM. Investigations on explainable artificial intelligence methods for the deep learning classification of fibre layup defect in the automated composite manufacturing. Compos Part B Eng. 2021;224:109160. doi: 10.1016/j.compositesb.2021.109160

 

  1. Gupta S, Mukhopadhyay T, Kushvaha V. Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites. Defence Technol. 2023;24:58-82. doi: 10.1016/j.dt.2022.09.008

 

  1. Baidoo-Anu D, Ansah LO. Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. J AI. 2023;7(1):52-62.

 

  1. Fui-Hoon Nah F, Zheng R, Cai J, Siau K, Chen L. Generative AI and ChatGPT: Applications, Challenges, and AI-Human Collaboration. United Kingdom: Taylor and Francis; 2023. p. 277-304.

 

  1. Mescheder L, Nowozin S, Geiger A. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks. In: Proceedings of Machine Learning Research; 2017. p. 2391-2400.

 

  1. Mishra A, Krishna Reddy S, Mittal A, Murthy HA. A Generative Model for Zero Shot Learning using Conditional Variational Autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops; 2018. p. 2188-2196.

 

  1. Teimouri A, Li G. Machine Learning-driven discovery of thermoset shape memory polymers with high glass transition temperature using variational autoencoders. J Polym Sci. 2025;63:1095-1107. doi: 10.1002/pol.20241095

 

  1. Wang W, Cheney W, Amirkhizi AV. Generative design of graded metamaterial arrays for dynamic response modulation. Mater Design. 2024;237:112550. doi: 10.1016/j.matdes.2023.112550

 

  1. Sun H, Wang X, Li J, Li Z, Guan Z. Efficient property-oriented design of composite layups via controllable latent features using generative VAE. Compos Sci Technol. 2025;259:110936. doi: 10.1016/j.compscitech.2024.110936

 

  1. Zhang C, Liu X, Wei D, Bo L. Predicting damage and quantifying uncertainty in composite plates with semi-supervised VAE-BNN model. Measurement. 2024;236:115069. doi: 10.1016/j.measurement.2024.115069

 

  1. Wang G, Zhang L, Xuan S, et al. An efficient surrogate model for damage forecasting of composite laminates based on deep learning. Compos Struct. 2024;331:117863. doi: 10.1016/j.compstruct.2023.117863

 

  1. Jiang D, Qian H, Wang Y, Zheng J, Zhang D, Li Q. Data driven prediction of fatigue residual stiffness of braided ceramic matrix composites based on Latent-ODE. Compos Struct. 2023;323:117504. doi: 10.1016/j.compstruct.2023.117504

 

  1. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets. In: Advances in Neural Information Processing Systems. Vol. 27; 2014 [arXiv Preprint].

 

  1. Yang Z, Yu CH, Buehler MJ. Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci Adv. 2021;7(15):eabd7416. doi: 10.1126/sciadv.abd7416

 

  1. Guo R, Alves M, Mehdikhani M, Breite C, Swolfs Y. Synthesising realistic 2D microstructures of unidirectional fibre-reinforced composites with a generative adversarial network. Compos Sci Technol. 2024;250:110539. doi: 10.1016/j.compscitech.2024.110539

 

  1. Wang Y, Sun J, Wang X, et al. Multi-objective optimization of engineered cementitious composite based on machine learning and generative adversarial network. J Build Eng. 2024;96:110471. doi: 10.1016/j.jobe.2024.110471

 

  1. Li M, Jia G, Cheng Z, Shi Z. Generative adversarial network guided topology optimization of periodic structures via Subset Simulation. Compos Struct. 2021;260:113254. doi: 10.1016/j.compstruct.2020.113254

 

  1. Cheng L, Tong Z, Xie S, Kersemans M. IRT-GAN: A generative adversarial network with a multi-headed fusion strategy for automated defect detection in composites using infrared thermography. Compos Struct. 2022;290:115543. doi: 10.1016/j.compstruct.2022.115543

 

  1. Yang L, Zhang Z, Song Y, et al. Diffusion models: A comprehensive survey of methods and applications. ACM Comput Surv. 2023;56(4):1-39. doi: 10.1145/3626235

 

  1. Lyu X, Ren X. Microstructure reconstruction of 2D/3D random materials via diffusion-based deep generative models. Sci Rep. 2024;14(1):5041. doi: 10.1038/s41598-024-54861-9

 

  1. Lee KH, Yun GJ. Microstructure reconstruction using diffusion-based generative models. Mech Adv Mater Struct. 2024;31(18):4443-4461. doi: 10.1080/15376494.2023.2198528

 

  1. Bastek JH, Kochmann DM. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat Mach Intell. 2023;5(12):1466-1475. doi: 10.1038/s42256-023-00762-x

 

  1. Huang T, Gao Y, Li Z, Hu Y, Xuan F. A hybrid deep learning framework based on diffusion model and deep residual neural network for defect detection in composite plates. Appl Sci. 2023;13(10):5843.

 

  1. Kobyzev I, Prince SJ, Brubaker MA. Normalizing flows: An introduction and review of current methods. IEEE Trans Pattern Anal Mach Intell. 2020;43(11):3964-3979. doi: 10.1109/TPAMI.2020.2992934

 

  1. Mirzaee H, Kamrava S. Inverse design of microstructures using conditional continuous normalizing flows. Acta Mater. 2025;285:120704. doi: 10.1016/j.actamat.2024.120704

 

  1. Zhang C, Lu J, Zhao Y. Generative pre-trained transformers (GPT)-based automated data mining for building energy management: Advantages, limitations and the future. Energy Built Environ. 2024;5(1):143-169. doi: 10.1016/j.enbenv.2023.06.005

 

  1. Shah B, Sinha A, Saxena P. Image GPT with Super Resolution. Berlin: Springer; 2022. p. 99-107.

 

  1. Hatamizadeh A, Song J, Liu G, Kautz J, Vahdat A. Diffit: Diffusion Vision Transformers for Image Generation. Berlin: Springer; 2024. p. 37-55.

 

  1. Generale AP, Robertson AE, Kelly C, Kalidindi SR. Inverse stochastic microstructure design. Acta Mater. 2024;271:119877. doi: 10.2139/ssrn.4590691

 

  1. Murphy RR. Introduction to AI Robotics. Cambridge: MIT Press; 2019.

 

  1. Yurtsever E, Lambert J, Carballo A, Takeda K. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access. 2020;8:58443-58469.

 

  1. Arinez JF, Chang Q, Gao RX, Xu C, Zhang J. Artificial intelligence in advanced manufacturing: Current status and future outlook. J Manuf Sci Eng. 2020;142(11):110804. doi: 10.1115/1.4047855

 

  1. Tang C, Sun D, Zou J, Xiong Y, Fang G, Zhang W. Lay‐up defects inspection for automated fiber placement with structural light scanning and deep learning. Polym Compos. 2025:1-11. doi: 10.1002/pc.29672

 

  1. Wang Y, Xu S, Bwar K, et al. Application of machine learning for composite moulding process modelling. Compos Commun. 2024;48:101960. doi: 10.1016/j.coco.2024.101960

 

  1. Machado JM, Tavares JMR, Camanho PP, Correia N. Automatic void content assessment of composite laminates using a machine-learning approach. Compos Struct. 2022;288:115383. doi: 10.1016/j.compstruct.2022.115383

 

  1. Liu Q, Wang Q, Guo J, et al. A Transformer-based neural network for automatic delamination characterization of quartz fiber-reinforced polymer curved structure using improved THz-TDS. Compos Struct. 2024;343:118272. doi: 10.1016/j.compstruct.2024.118272

 

  1. Fotouhi S, Pashmforoush F, Bodaghi M, Fotouhi M. Autonomous damage recognition in visual inspection of laminated composite structures using deep learning. Compos Struct. 2021;268:113960. doi: 10.1016/j.compstruct.2021.113960

 

  1. Szarski M, Chauhan S. Composite temperature profile and tooling optimization via Deep Reinforcement Learning. Compos Part A Appl Sci Manuf. 2021;142:106235.

 

  1. Zemzemoglu M, Unel M, Tunc LT. Enhancing automated fiber placement process monitoring and quality inspection: A hybrid thermal vision based framework. Compos Part B Eng. 2024;285:111753. doi: 10.1016/j.compositesa.2020.106235

 

  1. Schoenholz C, Zobeiry N. An accelerated process optimization method to minimize deformations in composites using theory-guided probabilistic machine learning. Compos Part A Appl Sci Manuf. 2024;176:107842. doi: 10.1016/j.compositesa.2023.107842

 

  1. Humfeld KD, Kim GY, Jeon JH, et al. Co-training of multiple neural networks for simultaneous optimization and training of physics-informed neural networks for composite curing. Compos Part A Appl Sci Manuf. 2025;193:108820. doi: 10.1016/j.compositesa.2025.108820
Share
Back to top
International Journal of AI for Materials and Design, Electronic ISSN: 3029-2573 Print ISSN: 3041-0746, Published by AccScience Publishing