AccScience Publishing / IJAMD / Online First / DOI: 10.36922/ijamd.5014
ORIGINAL RESEARCH ARTICLE

A biomimetic machine learning approach for predicting the mechanical properties of additive friction stir deposited aluminum alloy-based walled structures

Akshansh Mishra1,2*
Show Less
1 Department of Chemistry, School of Industrial and Information Engineering, Politecnico Di Milano, Milan, Italy
2 Computational Materials Research Group, AI Fab Lab, Maharajganj, Uttar Pradesh, India
Received: 30 September 2024 | Revised: 26 March 2025 | Accepted: 28 March 2025 | Published online: 9 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive friction stir deposition (AFSD) is a solid-state manufacturing technique capable of producing high-strength, defect-free metal components. The complexity of its process parameters has driven growing interest in machine learning (ML) for improved predictive accuracy and process control. This study presents a novel biomimetic ML approach to predict the mechanical properties of AFSD-fabricated aluminum alloy-walled structures. The methodology integrates numerical modeling of the AFSD process with genetic algorithm (GA)-optimized ML models to predict von Mises stress and logarithmic strain. Finite element analysis was employed to simulate the AFSD process for five aluminum alloys: AA2024, AA5083, AA5086, AA7075, and AA6061, capturing the complex thermal and mechanical interactions involved. A dataset of 200 samples was generated from these simulations. Decision tree and random forest (RF) regression models, optimized using GAs, were developed to predict key mechanical properties. The RF model demonstrated superior performance, achieving R² values of 0.9676 for von Mises stress and 0.7201 for logarithmic strain. This innovative approach provides a robust tool for understanding and optimizing the AFSD process across a range of aluminum alloys, offering valuable insights into material behavior under various process parameters.

Keywords
Additive friction stir deposition
Additive manufacturing
Machine learning
Hybrid algorithms
Funding
None.
Conflict of interest
The author declares no competing interests.
References
  1. Yu HZ, Mishra RS. Additive friction stir deposition: A deformation processing route to metal additive manufacturing. Mater Res Lett. 2021;9(2):71-83. doi: 10.1080/21663831.2020.1847211

 

  1. Patil SM, Sharma S, Joshi SS, Jin Y, Radhakrishnan M, Dahotre NB. Additive friction stir deposition of Al 6061- B4C composites: Process parameters, microstructure and property correlation. Mater Sci Eng A. 2024;910:146840. doi: 10.1016/j.msea.2024.146840

 

  1. Korganci M, Bozkurt Y. Recent developments in additive friction stir deposition (AFSD). J Mater Res Technol. 2024;30:4572-4583. doi: 10.1016/j.jmrt.2024.04.179

 

  1. Liu H, Xu M, Li X. Achievement of high-reliability and high-efficient deposit of PA66 by additive friction stir deposition. Compos Part B Eng. 2024;284:111682. doi: 10.1016/j.compositesb.2024.111682

 

  1. Chen L, Lu L, Zhu L, et al. Microstructure evolution and mechanical properties of multilayer AA6061 alloy fabricated by additive friction stir deposition. Metall Mater Trans A. 2024;55(4):1049-1064. doi: 10.1007/s11661-024-07303-0

 

  1. Liu H, Liu Y, Liang T, et al. Effect of press depth on defect formation in friction-rolling additive manufacturing. J Manuf Processes. 2024;119:305-320. doi: 10.1016/j.jmapro.2024.03.097

 

  1. Li X, Li X, Hu S, Liu Y, Ma D. Additive friction stir deposition: A review on processes, parameters, characteristics, and applications. Int J Adv Manuf Technol. 2024;133:1-18. doi: 10.1007/s00170-024-13890-4

 

  1. Xu X, Qiu W, Wan D, Wu J, Zhao F, Xiong Y. Numerical modelling of the viscoelastic polymer melt flow in material extrusion additive manufacturing. Virtual Phys Prototyp. 2024;19(1):e2300666. doi: 10.1080/17452759.2023.2300666

 

  1. Liu FC, Feng AH, Pei X, Hovanski Y, Mishra RS, Ma ZY. Friction stir based welding, processing, extrusion and additive manufacturing. Prog Mater Sci. 2024;146:101330. doi: 10.1016/j.pmatsci.2024.101330

 

  1. Patel A, Taufik M. Extrusion-based technology in additive manufacturing: A comprehensive review. Arab J Sci Eng. 2024;49(2):1309-1342. doi: 10.1007/s13369-022-07539-1

 

  1. Krishnanand, Singh V, Mittal V, Branwal AK, Sharma K, Taufik M. Extrusion strategies in fused deposition additive manufacturing: A review. Proc Inst Mech Eng Part E J Process Mech Eng. 2024;238(2):988-1012. doi: 10.1177/09544089221150709

 

  1. Maurya M, Maurya A, Kumar S. Variants of friction stir based processes: Review on process fundamentals, material attributes and mechanical properties. Mater Testing. 2024;66(2):271-287. doi: 10.1515/mt-2023-0196

 

  1. Gottwald RB, Gotawala N, Erb DJ, Hang ZY. An exploratory study on miniaturized additive friction stir deposition. J Manuf Processes. 2024;126:154-164. doi: 10.1016/j.jmapro.2024.07.076

 

  1. Rao AG, Meena N. Friction Stir Based Additive Manufacturing. Friction Stir Welding and Processing: Fundamentals to Advancements. Hoboken: Wiley; 2024. p. 293-305.

 

  1. Garcia D, Hartley WD, Rauch HA, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si. Addit Manuf. 2020;34:101386. doi: 10.1016/j.addma.2020.101386

 

  1. Stubblefield GG, Fraser K, Phillips BJ, Jordon JB, Allison PG. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D). Mater Design. 2021;202:109514. doi: 10.1016/j.matdes.2021.109514

 

  1. Patil SM, Krishna KM, Sharma S, Joshi SS, Radhakrishnan M, Banerjee R, et al. Thermo-mechanical process variables driven microstructure evolution during additive friction stir deposition of IN625. Addit Manuf. 2024;80:103958. doi: 10.1016/j.addma.2024.103958

 

  1. Sharifi A, Khodabakhshi F, Gerlich AP. Suppressing anisotropy in additive manufacturing by shear crystallographic texture development during multi-layer friction stir deposition. Mater Sci Eng A. 2024;903:146640. doi: 10.1016/j.msea.2024.146640

 

  1. Agrawal P, Shiau CH, Sharma A, et al. Ion irradiation and examination of Additive friction stir deposited 316 stainless steel. Mater Design. 2024;238:112730. doi: 10.1016/j.matdes.2024.112730

 

  1. Bagheri E, Zavari S, Adibi N, Ding H, Ghadimi H, Guo S. Additive friction stir deposition of al 7075 parts and the effect of heat treatment on microstructure, electroconductivity, and mechanical properties. Int J Adv Manuf Technol. 2024;135:763-774. doi: 10.1007/s00170-024-14582-9

 

  1. Jin Y, Wang T, Liu T, et al. Gradient process parameter optimization in additive friction stir deposition of aluminum alloys. Int J Mach Tools Manuf. 2024;195:104113. doi: 10.1016/j.ijmachtools.2023.104113

 

  1. Dong X, Zhou M, Geng Y, et al. Recent advances in additive friction stir deposition: A critical review. Materials (Basel). 2024;17(21):5205. doi: 10.3390/ma17215205

 

  1. Zhang M, Jiang T, Feng X, et al. Investigation on in-situ tensile behaviors of 6061 aluminum alloy fabricated by wire additive friction stir deposition. J Alloys Compds. 2024;1008:176780. doi: 10.1016/j.jallcom.2024.176780

 

  1. Sharma A, Jain R, Agrawal P, et al. Enhanced thermal stability in additive friction stir deposited ODS IN9052 Al alloy. Acta Mater. 2024;279:120284. doi: 10.1016/j.actamat.2024.120284

 

  1. Pennington BK. Frequency Response Modeling of Additive Friction Stir Deposition Parts with Print Defects [Doctoral Dissertation, Virginia Tech]; 2024.

 

  1. Merritt GR, Cousin CA, Yoon HS. Nonlinear temperature control of additive friction stir deposition evaluated on an echo state network. J Dyn Syst Meas Control. 2024;146(2):021004. doi: 10.1115/1.4064000

 

  1. Wei J, He C, Dong R, Tian N, Qin G. Enhancing mechanical properties and defects elimination in 2024 aluminum alloy through interlayer friction stir processing in wire arc additive manufacturing. Mater Sci Eng A. 2024;901:146582. doi: 10.1016/j.msea.2024.146582

 

  1. Das A, Medhi T, Kapil S, Biswas P. Multi-track multi-layer friction stir additive manufacturing of AA6061-T6 alloy. Prog Addit Manuf. 2024;9(4):835-855. doi: 10.1007/s40964-023-00485-w

 

  1. Germano E, Walker J, Mills B, et al. Enhancing additive friction stir deposition through comprehensive ultrasonic defect detection and process optimisation. In: UK and Ireland IEEE Ultrasonics, Ferroelectrics and Frequency Control Chapter. Ireland: IEEE; 2024.

 

  1. Wang H, Li Y, Zhang M, et al. Repairing the 7075 Al alloy plate by additive friction stir deposition with different feedstock rods. Int J Adv Manuf Technol. 2024;134(1):921-933. doi: 10.1007/s00170-024-14186-3

 

  1. Yakubov V, Ostergaard H, Bhagavath S, et al. Hardness Distribution and Defect Formation in Aluminium Alloys Fabricated Via Additive Friction Stir Deposition (AFSD). In 11th Australasian Congress on Applied Mechanics (ACAM2024). Brisbane: Engineers Australia; 2024. p. 244-251.

 

  1. Kallien Z, Rath L, Roos A, Klusemann B. Application of friction surfacing for solid state additive manufacturing of cylindrical shell structures. Addit Manuf Lett. 2024;8:100184. doi: 10.1016/j.addlet.2023.100184

 

  1. Griffiths RJ, Garcia D, Hahn GD, Lua J, Phan N, Hang ZY. A non-melting additive approach to structural repair of aluminum aircraft fastener holes. Addit Manuf Lett. 2024;11:100249. doi: 10.1016/j.addlet.2024.100249

 

  1. Abbasi–Nahr M, Mirsalehi, SE. Additive friction stir deposition of AA5083/MoS2-diamond hybrid nanocomposites: Investigating their metallurgical, mechanical, tribological, and electrochemical characteristics, and process-structure-property relationships. J Alloys Compd. 2025;1013:178553. doi: 10.1016/j.jallcom.2025.178553

 

  1. Palya NI, Fraser K, Zhu N, et al. Microstructure prediction from smooth particle hydrodynamics process simulations of additive friction stir deposition. Metall Mater Trans A. 2024;55(9):3601-3616. doi: 10.1007/s11661-024-07499-1

 

  1. Modi U, Rai A, Ahmed S. Research prospects of friction stir additive manufacturing (FSAM). AIP Conf Proc. 2024;2960(1):030006. doi: 10.1063/5.0183061

 

  1. Rapaka R, Ladi H, Raja D, Muvvala G, Mukherjee T, Vicharapu B. Understanding in-process responses in multi-layer friction stir additive manufacturing: Temperature, viscosity, tool torque, and mechanical properties. J Mater Process Technol. 2024;330:118491. doi: 10.1016/j.jmatprotec.2024.118491

 

  1. Qiao Q, Liu Q, Pu J, et al. A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition. Mater Genome Eng Adv. 2024;2(1):e31. doi: 10.1002/mgea.31

 

  1. Zhu Y, Wu X, Gotawala N, Higdon DM, Hang ZY. Thermal prediction of additive friction stir deposition through Bayesian learning-enabled explainable artificial intelligence. J Manuf Syst. 2024;72:1-15. doi: 10.1016/j.jmsy.2023.10.015

 

  1. Shi T, Wu J, Ma M, Charles E, Schmitz T. AFSD-Nets: A physics-informed machine learning model for predicting the temperature evolution during additive friction stir deposition. J Manuf Sci Eng. 2024;146(8):081003. doi: 10.1115/1.4065178

 

Share
Back to top
International Journal of AI for Materials and Design, Electronic ISSN: 3029-2573 Print ISSN: 3041-0746, Published by AccScience Publishing