Structural health monitoring of metal structures using an improved carbon nanotube bucky paper sensor and LSTM neural network

In this paper, an improved fabrication method is presented for fabricating carbon nanotube (CNT) based multi-functional bucky paper (CNT-BP) sensors that will be primarily used for adaptive sensing in structural health monitoring applications. A large number of BPs were fabricated using multi-walled CNTs with varying methanol-CNT compositions, sonication times, temperatures, curing durations, membrane thicknesses, and electrode placements to determine the optimal configuration for large-scale production. The obtained optimal configuration of the ingredients that yields an adequate sensitivity and ductility of the CNT-BP was then employed for measuring the crack propagation behavior in the fatigued samples. Further, a long short-term memory (LSTM)-based neural network was proposed for prognosis in a metallic plate with fatigue crack propagation. The actual crack lengths of the fatigue crack obtained by the high-speed digital camera were correlated with that predicted by the CNT-BP-based model and LSTM, showing good agreement. Thus, the present study demonstrates that the proposed improved method of CNT-BP is highly efficient in the diagnosis and prognosis of fatigue cracks in metallic structures.

- Masurkar F, Tse PW, Yelve NP. Theoretical and experimental measurement of intrinsic and fatigue induced material nonlinearities using Lamb wave based nonlinearity parameters. Measurement. 2020;151:107148. doi: 10.1016/j.measurement.2019.107148
- Tse P, Masurkar F, Yelve NP. Estimation of remaining useful life of fatigued plate specimens using Lamb wave-based nonlinearity parameters. Struct Control Health Monit. 2020;27(4):e2486. doi: 10.1002/stc.2486
- Yelve NP, Masurkar F, Tse PW. Application of rayleigh wave-based nonlinearity parameter to estimate the remnant useful life of fatigued thick aluminum plates. ISSS J Micro Smart Syst. 2021;10(2):161-178. doi: 10.1007/s41683-021-00074-5
- Luo W, Liu Y, Saha M. CNT Bucky Paper Enhanced Sandwich Composites for In-Situ Load Sensing. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Vol. 58493. 2017. p. V014T11A044. doi: 10.1115/IMECE2017-71550
- Wang X, An B, Lu S, Ma K, Zhang L, Xu T. Electrical response of carbon nanotube buckypaper sensor subjected to monotonic tension, cycle tension and temperature. Micro Nano Lett. 2018;13(6):862-867. doi: 10.1049/mnl.2017.0914
- Lu S, Du K, Wang X, et al. Real-time monitoring of low-velocity impact damage for composite structures with the omnidirection carbon nanotubes’ buckypaper sensors. Struct Health Monit. 2019;18(2):454-465. doi: 10.1177/1475921718757937
- Lu S, Yang X, Zhang L, et al. Real-time monitoring of resin infiltration process in vacuum assisted molding (VARI) of composites with carbon nanotube buckypaper sensor. Mater Res Express. 2019;6(11):115628. doi: 10.1088/2053-1591/ab507b
- Her SC, Hsu WC. Strain and temperature sensitivities along with mechanical properties of CNT buckypaper sensors. Sensors (Basel). 2020;20(11):3067. doi: 10.3390/s20113067
- Yee MJ, Mubarak NM, Khalid M, Abdullah EC, Jagadish P. Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep. 2018;8(1):17295. doi: 10.1038/s41598-018-35638-3
- Yang R, Gui X, Yao L, et al. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nanomicro Lett. 2021;13:66. doi: 10.1007/s40820-021-00597-4
- De Paula Santos LF, Monticeli FM, Ribeiro B, Costa ML, Alderliesten R, Botelho EC. Effect of carbon nanotube buckypapers on interlaminar fracture toughness of thermoplastic composites subjected to fatigue tests. Int J Fatigue. 2025;195:108868. doi: 10.1016/j.ijfatigue.2025.108868
- Ahmed S, Schumacher T, Thostenson ET, McConnell J. Performance evaluation of a carbon nanotube sensor for fatigue crack monitoring of metal structures. Sensors (Basel). 2020;20(16):4383. doi: 10.3390/s20164383
- Jiang XW, Wang Z, Lu SW, et al. Vibration monitoring for composite structures using buckypaper sensors arrayed by flexible printed circuit. Int J Smart Nano Mater. 2021;12(2):198-217. doi: 10.1080/19475411.2021.1910874
- Hehr A, Schulz M, Shanov V, Song Y. Micro-crack detection and assessment with embedded carbon nanotube thread in composite materials. Struct Health Monit. 2014;13(5):512-524. doi: 10.1177/1475921714532987
- Ribeiro B, Botelho EC, Costa ML, Bandeira CF. Carbon nanotube buckypaper reinforced polymer composites: A review. Polímeros. 2017;27(3):247-255. doi: 10.1590/0104-1428.03916
- Wan Y, Yang H, Tian Z, et al. Mode I interlaminar crack length prediction by the resistance signal of the integrated MWCNT sensor in WGF/epoxy composites during DCB test. J Mater Res Technol. 2020;9(3):5922-5933. doi: 10.1016/j.jmrt.2020.03.119
- Lecompte D, Vantomme J, Sol H. Crack detection in a concrete beam using two different camera techniques. Struct Health Monit. 2006;5(1):59-68. doi: 10.1177/1475921706057982
- Ashrafi B, Johnson L, Martinez-Rubi Y, Martinez M, Mrad N. Single-walled carbon nanotube-modified epoxy thin films for continuous crack monitoring of metallic structures. Struct Health Monit. 2012;11(5):589-601. doi: 10.1177/1475921712449509
- Bian N, Ren Y, Shrivastava A, et al. Enhancing the interlaminar adhesion of carbon fiber composites via carbon nanotube sheets. Acad Mater Sci. 2024;1(2).:1-11. doi: 10.20935/AcadMatSci6206
- Lin H, Zhang C, Liao N, Zhang M. Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection. Compos Part B Eng. 2023;254:110574. doi: 10.1016/j.compositesb.2023.110574
- Olson TM, Kwon YW, Hart DC, Loup DC, Rasmussen EA. Carbon nanotube based sensor to monitor crack growth in cracked aluminum structures underneath composite patching. Appl Compos Mater. 2015;22(5):457-473. doi: 10.1007/s10443-014-9417-0
- Abbasi A, Nazari F, Nataraj C. Application of long short-term memory neural network to crack propagation prognostics. In: Proceedings of the 2020 IEEE International Conference on Prognostics and Health Management (ICPHM); 2020. p. 1-6. doi: 10.1109/ICPHM49022.2020.9187033
- Pan Y, Khodaei ZS, Aliabadi FM. In-service fatigue crack monitoring through baseline-free automated detection and physics-informed neural network quantification. NDT E Int. 2025;153:103360. doi: 10.1016/j.ndteint.2025.103360
- Shin H, Yoon T, Yoon S. Fatigue life predictor: Predicting fatigue life of metallic material using LSTM with a contextual attention model. RSC Adv. 2025;15(20):15781-15795. doi: 10.1039/d5ra01578b
- Giannella V, Bardozzo F, Postiglione A, Tagliaferri R, Sepe R, Armentani E. Neural networks for fatigue crack propagation predictions in real-time under uncertainty. Comput Struct. 2023;288:107157. doi: 10.1016/j.compstruc.2023.107157
- Colah. Understanding LSTMs; 2015. Available from: https:// colah.github.io/posts/2015-08-Understanding-LSTMs/ [Last accessed on 2025 Sep 19].
- Masurkar F, Tse P. Theoretical and experimental evaluation of the health status of a 1018 steel I-beam using nonlinear rayleigh waves: Application to evaluating localized plastic damage due to impact loading. Ultrasonics. 2020;108:106036. doi: 10.1016/j.ultras.2019.106036
- Yelve NP, Tse PW, Masurkar F. Theoretical and experimental evaluation of material nonlinearity in metal plates using Lamb waves. Struct Control Health Monit. 2018;25(6):e2164. doi: 10.1002/stc.2164
- Masurkar F, Tse P, Yelve NP. Evaluation of inherent and dislocation induced material nonlinearity in metallic plates using Lamb waves. Appl Acoust. 2018;136:76-85. doi: 10.1016/j.apacoust.2018.02.011
- Xu N, Fu Z, Wang Y, Shen X. Study on the short fatigue crack initiation and propagation behavior of 42CrMo. Adv Mech Eng. 2022;14(9):1-9. doi: 10.1177/16878132221119928
- Ibrahim MFE, Miller KJ. Determination of fatigue crack initiation life. Fatigue Fract Eng Mater Struct. 1979;2(4):351-360. doi: 10.1111/j.1460-2695.1979.tb01093.x
- Wang H, Liu X, Wang X, Wang Y. Numerical method for estimating fatigue crack initiation size using elastic-plastic fracture mechanics method. Appl Math Model. 2019;73:365-377. doi: 10.1016/j.apm.2019.04.010