A review of cubic and statistical associating fluid theory equations of state for modeling supercritical hydrogen

The transition to a global hydrogen economy necessitates the development and optimization of technologies for hydrogen production, storage, and utilization, many of which operate under supercritical conditions. Accurate prediction of the thermodynamic properties of supercritical hydrogen is therefore of paramount importance for engineering design, operational efficiency, and safety. This review provides a critical evaluation and comparative analysis of two dominant classes of thermodynamic models: The computationally simple cubic equations of state (CEoSs), such as Peng–Robinson and Soave–Redlich–Kwong, and the more physically rigorous statistical associating fluid theory (SAFT)-based models. The analysis reveals that classical CEoSs exhibit significant inaccuracies in predicting the properties of supercritical hydrogen, a failure rooted in their empirical formulation, which cannot account for the quantum mechanical effects prominent in light fluids. In contrast, SAFT-based models, which are derived from molecular-level principles, demonstrate consistently superior accuracy in predicting volumetric, caloric, and transport-related properties across wide ranges of temperature and pressure. This review elucidates the fundamental reasons for these performance disparities and discusses the practical trade-offs between model simplicity and predictive power. Future research directions are explored, including the role of quantum corrections for cubic models, the development of hybrid EoSs, and the transformative potential of machine learning for EoS parameterization and property prediction.
- Edwards PP, Kuznetsov VL, David WIF. Hydrogen energy. Philos Trans A Math Phys Eng Sci. 2007;365(1853):1043-1056. doi: 10.1098/rsta.2006.1965
- Pakravesh A, Mohammadi AH, Richon D. Modeling of supercritical hydrogen thermodynamic properties using cubic and SAFT type equations of state. J Supercrit Fluids. 2025;222:106588. doi: 10.1016/j.supflu.2025.106588
- Bartolomeu RAC, Franco LFM. Thermophysical properties of supercritical H2 from molecular dynamics simulations. Int J Hydrogen Energy. 2020;45(33):16372-16380. doi: 10.1016/j.ijhydene.2020.04.164
- Yang F, Pádua AAH. Variable-range PC-SAFT parametrization for accurate modeling of caloric properties, critical temperature, and critical pressure: Normal alkanes and hydrogen. Ind Eng Chem Res. 2025;64(18):9385-9395. doi: 10.1021/acs.iecr.5c00251
- Domb C. Thermodynamics of critical points. Phys Bull. 1968;19(2):36. doi: 10.1088/0031-9112/19/2/002
- Linstrom PJ, Mallard WG. The NIST chemistry webbook: A chemical data resource on the internet. J Chem Eng Data. 2001;46(5):1059-1063. doi: 10.18434/t4d303
- Clifford AA, Williams JR. Introduction to supercritical fluids and their applications. In: Williams JR, Clifford AA, editors. Supercritical Fluid Methods and Protocols. United States: Humana Press; 2000. p. 1-16.
- Wan R, Yue T, Xu J, Wu W, Chen X, Dou B. Thermodynamics analysis of cryogenic supercritical hydrogen storage system based on multi-stage joule-brayton cycle. Cryo. 2025;1(2):6. doi: 10.3390/cryo1020006
- Baroutaji A, Wilberforce T, Ramadan M, Olabi AG. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew Sustain Energy Rev. 2019;106:31-40. doi: 10.1016/j.rser.2019.02.022
- Sakoda N, Shindo K, Shinzato K, Kohno M, Takata Y, Fujii M. Review of the thermodynamic properties of hydrogen based on existing equations of state. Int J Thermophys. 2010;31(2):276-296. doi: 10.1007/s10765-009-0699-7
- Joonaki E, Rostaminikoo E, Ghanaatian S, Nasriani HR. Thermodynamic properties of hydrogen containing systems and calculation of gas critical flow factor. Meas Sens. 2025;38:101587. doi: 10.1016/j.measen.2024.101587
- Locke J, Landrum B. Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels. In: 41st AIAA/ ASME/SAE/ASEE Joint Propulsion Conference; Exhibit.
- Loffredo M. Optimization of Peng-Robinson and Redlich- Kwong-Soave Equations of State parameters for H2-CH4 Mixtures. Italy: Politecnico di Torino; 2023.
- Deiters UK. Comments on the modeling of hydrogen and hydrogen-containing mixtures with cubic equations of state. Fluid Phase Equilibria. 2013;352:93-96. doi: 10.1016/j.fluid.2013.05.032
- Jacobsen RT, Leachman JW, Penoncello SG, Lemmon EW. Current status of thermodynamic properties of hydrogen. Int J Thermophys. 2007;28(3):758-772. doi: 10.1007/s10765-007-0226-7
- Staats WL. Analysis of a Supercritical Hydrogen Liquefaction Cycle. Massachusetts: Massachusetts Institute of Technology; 2008.
- Li H, editor. Cubic equation of state. In: Multiphase Equilibria of Complex Reservoir Fluids: An Equation of State Modeling Approach. Cham: Springer International Publishing; 2022:25-82.
- Schmidt G, Wenzel H. A modified van der Waals type equation of state. Chem Eng Sci. 1980;35(7):1503-1512. doi: 10.1016/0009-2509(80)80044-3
- Zhao W, Xia L, Sun X, Xiang S. A review of the alpha functions of cubic equations of state for different research systems. Int J Thermophys. 2019;40(12):105. doi: 10.1007/s10765-019-2567-4
- Mohamed T, Kozinski J, Ramos-Pallares F. Peng-robinson or redlich-kwong? Twu or soave α-function? Which combination of cubic equation of state (CEoS) and α-function produces more accurate and consistent results for pure components. ACS Omega. 2024;9(51):50385-50402. doi: 10.1021/acsomega.4c07037
- Aasen A, Hammer M, Lasala S, Jaubert JN, Wilhelmsen Ø. Accurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixtures. Fluid Phase Equilibria. 2020;524:112790. doi: 10.1016/j.fluid.2020.112790
- Müller EA, Gubbins KE. Molecular-based equations of state for associating fluids: A review of SAFT and related approaches. Ind Eng Chem Res. 2001;40(10):2193-2211. doi: 10.1021/ie000773w
- McCabe C, Galindo A. SAFT associating fluids and fluid mixtures. In: Goodwin AR, Sengers J, Peters CJ, editors. Applied Thermodynamics of Fluids. United Kingdom: The Royal Society of Chemistry; 2010:0.
- Pakravesh A, Zarei H. On the effect of the hard-sphere term on the statistical associating fluid theory equation of state. Phys Chem Res. 2022;10(1):45-56. doi: 10.22036/pcr.2021.291384.1928
- Ting PD, Gonzalez DL, Hirasaki GJ, Chapman WG. Application of the PC-SAFT equation of state to asphaltene phase behavior. In: Mullins OC, Sheu EY, Hammami A, Marshall AG, editors. Asphaltenes, Heavy Oils, and Petroleomics. New York: Springer; 2007. p. 301-327.
- Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244-1260. doi: 10.1021/ie0003887
- Lafitte T, Apostolakou A, Avendaño C, et al. Accurate statistical associating fluid theory for chain molecules formed from Mie segments. J Chem Phys. 2013;139(15):154504. doi: 10.1063/1.4819786
- Papaioannou V, Lafitte T, Avendaño C, et al. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. J Chem Phys. 2014;140(5):054107. doi: 10.1063/1.4851455
- Pakravesh A, Zarei F, Zarei H. PρT parameterization of SAFT equation of state: developing a new parameterization method for equations of state. Fluid Phase Equilib. 2021;538:113024. doi: 10.1016/j.fluid.2021.113024
- Leachman JW, Jacobsen RT, Penoncello SG, Lemmon EW. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J Phys Chem Ref Data 2009;38(3):721-748. doi: 10.1063/1.3160306
- Lemmon EW, Huber ML, Leachman JW. Revised standardized equation for hydrogen gas densities for fuel consumption applications. J Res Natl Inst Stand Technol. 2008;113(6):341-350. doi: 10.6028/jres.113.028
- Sengers JV, Kayser R, Peters C, White H. Equations of State for Fluids and Fluid Mixtures. Vol 5. Amsterdam: Elsevier; 2000.
- Nasrifar K. Comparative study of eleven equations of state in predicting the thermodynamic properties of hydrogen. Int J Hydrogen Energy. 2010;35(8):3802-3811. doi: 10.1016/j.ijhydene.2010.01.032
- Le Guennec Y, Lasala S, Privat R, Jaubert JN. A consistency test for α-functions of cubic equations of state. Fluid Phase Equilib. 2016;427:513-538. doi: 10.1016/j.fluid.2016.07.026
- Botros KK, Jensen L. Performance of Twelve Different Equations of State for Natural Gas and Hydrogen Blends. In: 14th International Pipeline Conference; 2022.
- Aasen A, Hammer M, Lasala S, Jaubert J-N, Wilhelmsen Ø. Accurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixtures. Fluid Phase Equilib. 2020;524:112790. doi: 10.1016/j.fluid.2020.112790
- Ghosh A, Chapman WG, French RN. Gas solubility in hydrocarbons-a SAFT-based approach. Fluid Phase Equilib. 2003;209(2):229-243. doi: 10.1016/S0378-3812(03)00147-X
- Khare NP, Lucas B, Seavey KC, et al. Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors. Ind Eng Chem Res. 2004;43(4):884-900. doi: 10.1021/ie030714t
- Senol I. Perturbed-chain statistical association fluid theory (pc-saft) parameters for propane, ethylene, and hydrogen under supercritical conditions. World Acad Sci Eng Technol. 2011;59:1395-1403. doi: 10.5281/zenodo.1057633
- Trinh TKH, Passarello JP, De Hemptinne JC, Lugo R. Use of a non additive GC-PPC-SAFT equation of state to model hydrogen solubility in oxygenated organic compounds. Fluid Phase Equilib. 2016;429:177-195. doi: 10.1016/j.fluid.2016.08.003
- Nikolaidis IK, Franco LFM, Vechot LN, Economou IG. Modeling of physical properties and vapor - liquid equilibrium of ethylene and ethylene mixtures with equations of state. Fluid Phase Equilib. 2018;470:149-163. doi: 10.1016/j.fluid.2018.01.021
- Alkhatib III, AlHajaj A, Almansoori A, Vega LF. Accurate predictions of the effect of hydrogen composition on the thermodynamics and transport properties of natural gas. Ind Eng Chem Res. 2022;61(18):6214-6234. doi: 10.1021/acs.iecr.2c00363
- Alkhatib III, Llovell F, Vega LF. Assessing the effect of impurities on the thermophysical properties of methane-based energy systems using polar soft-SAFT. Fluid Phase Equilib. 2021;527:112841. doi: 10.1016/j.fluid.2020.112841
- Alanazi A, Bawazeer S, Ali M, Keshavarz A, Hoteit H. Thermodynamic modeling of hydrogen-water systems with gas impurity at various conditions using cubic and PC-SAFT equations of state. Energy Convers Manage X. 2022;15:100257. doi: 10.1016/j.ecmx.2022.100257
- Lozano-Martín D, Khanipour P, Kipphardt H, Tuma D, Chamorro CR. Thermodynamic characterization of the (H2 + C3H8) system significant for the hydrogen economy: Experimental (p, ρ, T) determination and equation-of-state modelling. Int J Hydrogen Energy. 2023;48(23):8645-8667. doi: 10.1016/j.ijhydene.2022.11.170
- Alanazi A, Ali M, Bawazeer S, Yekeen N, Hoteit H. Evaluation of cubic, PC-SAFT, and GERG2008 equations of state for accurate calculations of thermophysical properties of hydrogen-blend mixtures. Energy Rep. 2022;8:13876-13899. doi: 10.1016/j.egyr.2022.10.257
- Li JQ, Xu H, Li JC, Kwon JT. A theoretical study on the compressibility factor of hydrogen gas in the high pressure tank. J Hydrogen New Energy. 2023;34(2):162-168. doi: 10.7316/jhne.2023.34.2.162
- Giannissi SG, Venetsanos AG, Markatos N. Modeling of cryogenic hydrogen jets. In: 6th International Conference on Hydrogne Safety; 2015.
- Faradonbeh MR, Abedi J, Harding TG. Comparative study of eight cubic equations of state for predicting thermodynamic properties of alkanes. Canad J Chem Eng. 2013;91(1):101-110. doi: 10.1002/cjce.20682
- Charalampidi AM. Evaluation of Thermodynamic Models for Pure Hydrogen and Hydrogen-Containing Binary Mixtures. Taiwan: NTNU; 2022.
- Patrikiadou A. Modeling of Thermophysical Properties of Hydrogen-Containing Mixtures with Application to Production, Transport and Storage of Hydrogen. Taiwan: NTNU; 2023.
- Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J Chem Eng Data. 2012;57(11):3032-3091 doi: 10.1021/je300655b
- Bartolomeu RAC, Lopes JT, Spera MBM, Franco LFM. Derivative properties data for hydrogen-ethylene supercritical mixtures using a SAFT EoS and a SAFT force field. J Chem Eng Data. 2020;65(12):5735-5742. doi: 10.1021/acs.jced.0c00699
- Mohammed F, Qasim M, Elamir A, Darwish NA. Generalized binary interaction parameters for hydrogen-heavy-n-alkane systems using Peng-Robinson equation of state. Chem Eng Commun. 2018;205(9):1226-1238. doi: 10.1080/00986445.2018.1442333
- Selam MA, Economou IG, Castier M. A thermodynamic model for strong aqueous electrolytes based on the eSAFT-VR Mie equation of state. Fluid Phase Equilib. 2018;464:47-63. doi: 10.1016/j.fluid.2018.02.018