The application of nanomaterials in the treatment of choroidal neovascularization: Precise drug delivery systems and strategies for enhancing photosensitizers
Choroidal neovascularization (CNV) is a severe ocular pathological condition characterized by abnormal vascular proliferation in the choroid layer, penetrating Bruch’s membrane, and entering the subretinal space. It usually occurs in the macular area and may lead to irreversible vision impairment or even blindness. The formation mechanism of CNV is complex and involves the abnormal activation of multiple molecular signaling pathways. Among them, the overexpression of vascular endothelial growth factor (VEGF) and fibroblast growth factor is the primary driving factor. At present, the traditional treatment strategies for CNV mainly include anti-VEGF drug injection and photodynamic therapy (PDT), but they have limitations, including the need for frequent injections, poor patient response, and potential side effects. To address these issues, researchers have proposed using nanomaterials in CNV treatment. As novel drug delivery systems, nanomaterials offer advantages such as targeted delivery, intelligent response, and precise release in the treatment of CNV, significantly improving drug bioavailability, reducing systemic toxicity, and enhancing therapeutic effects. This article systematically analyzes the application and mechanism of nanomaterials in CNV treatment, including their use in drug therapy and PDT, by screening studies on the application of nanomaterials in CNV treatment in the past decade using “nanomaterials” and “CNV” as keywords in the database, providing a reference for the development of new nanomaterials.
- Garg SJ, Hadziahmetovic M. Verteporfin photodynamic therapy for the treatment of chorioretinal conditions: A narrative review. Clin Ophthalmol. 2024;18:1701-1716. doi: 10.2147/OPTH.S464371
- Ren JS, Bai W, Ding JJ, et al. Hypoxia-induced AFAP1L1 regulates pathological neovascularization via the YAP-DLL4-NOTCH axis. J Transl Med. 2023;21(1):651. doi: 10.1186/s12967-023-04503-x
- Cao Y, Dang M, Tian Z, et al. Aqueous humor cytokine levels in patients with subretinal fibrosis in neovascular age-related macular degeneration. BMC Ophthalmol. 2024;24(1):335. doi: 10.1186/s12886-024-03614-3
- Lixi F, Vitiello L, Giannaccare G. Marine natural products rescuing the eye: A narrative review. Mar Drugs. 2024;22(4):155. doi: 10.3390/md22040155
- Fabre M, Mateo L, Lamaa D, et al. Recent advances in age-related macular degeneration therapies. Molecules. 2022;27(16):5089. doi: 10.3390/molecules27165089
- Wolfrum P, Bohm EW, Lorenz K, Stoffelns B, Pfeiffer N, Korb CA. Short-term clinical outcomes of patients with diabetic macular edema following a therapy switch to faricimab. J Clin Med. 2024;13(15):4508. doi: 10.3390/jcm13154508
- Kuo YW, Lee CY, Hsieh YT, et al. Impact of anti-vascular endothelial growth factor treatment on neovascular age-related macular degeneration with and without retinal pigment epithelial detachment: A real-world study. J Pers Med. 2024;14(10):1041. doi: 10.3390/jpm14101041
- Vigneswaran K, Boyd NH, Oh SY, et al. YAP/TAZ transcriptional coactivators create therapeutic vulnerability to verteporfin in EGFR-mutant glioblastoma. Clin Cancer Res. 2021;27(5):1553-1569. doi: 10.1158/1078-0432.CCR-20-0018
- Narmina A, Ayşe B, Mahmut Y, et al. Synthesis of plant-derived selenium nanoparticles from Lankaran-Astara tea (Camellia sinensis L.) plant and evaluation of their activities on different enzymes. Adv Biol Earth Sci. 2025;10(2):262-269. doi: 10.62476/abes.102262
- Rosic G. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv Biol Earth Sci. 2024;9(Special Issue):11-34. doi: 10.62476/abes9s11
- Evcil M, Kurt B, Baran A, Mouhoub A, Karakaplan M. Development, characterization and application of chitosan-based formulation incorporating Crataegus orientalis extract for food conservation. Adv Biol Earth Sci. 2025;10(2):208-225. doi: 10.62476/abes.102208
- Ma P, Pan X, Liu R, et al. Ocular adverse events associated with anti-VEGF therapy: A pharmacovigilance study of the FDA adverse event reporting system (FAERS). Front Pharmacol. 2022;13:1017889. doi: 10.3389/fphar.2022.1017889
- Pei X, Li Z. Narrative review of comprehensive management strategies for diabetic retinopathy: Interdisciplinary approaches and future perspectives. BMJ Public Health. 2025;3(1):e001353. doi: 10.1136/bmjph-2024-001353
- Nawar AE. Effectiveness of suprachoroidal injection of triamcinolone acetonide in resistant diabetic macular edema using a modified microneedle. Clin Ophthalmol. 2022;16:3821-3831. doi: 10.2147/OPTH.S391319
- Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J Nanobiotechnology. 2023;21(1):232. doi: 10.1186/s12951-023-01992-2
- Jia Y, Jiang Y, He Y, et al. Approved nanomedicine against diseases. Pharmaceutics. 2023;15(3):774. doi: 10.3390/pharmaceutics15030774
- Chang W, Lv X, Zhu J, et al. Multifunctional nanotherapeutics with long-acting release against macular degeneration by minimally invasive administration. ACS Nano. 2024; 18(30):19649. doi: 10.1021/acsnano.4c04494
- Wu Y, Qin X, Lu X, et al. Enzyme-responsive DNA origami-antibody conjugates for targeted and combined therapy of choroidal neovascularization. ACS Nano. 2024;18(33):22194-22207. doi: 10.1021/acsnano.4c05635
- Xu S, Li J, Long K, Wang W. Reactive oxygen species responsive supramolecular prodrug eyedrops for the treatment of choroidal neovascularization. Nano Lett. 2024;24(46):14584-14593. doi: 10.1021/acs.nanolett.4c02576
- Huang K, Liu X, Lv Z, et al. MMP9-responsive graphene oxide quantum dot-based nano-in-micro drug delivery system for combinatorial therapy of choroidal neovascularization. Small. 2023;19(39):e2207335. doi: 10.1002/smll.202207335
- Zhu C, Zhu X, Li H, et al. Recent advances in photodynamic therapy for vascular abnormalities. Photobiomodul Photomed Laser Surg. 2024;42(8):501-508. doi: 10.1089/pho.2023.0188
- Mariano S, Carata E, Calcagnile L, Panzarini E. Recent advances in photodynamic therapy: Metal-based nanoparticles as tools to improve cancer therapy. Pharmaceutics. 2024;16(7):932. doi: 10.3390/pharmaceutics16070932
- Cai Y, Chai T, Nguyen W, et al. Phototherapy in cancer treatment: Strategies and challenges. Signal Transduct Target Ther. 2025;10(1):115. doi: 10.1038/s41392-025-02140-y
- Goverdhan SV, Hannan S, Newsom RB, Luff AJ, Griffiths H, Lotery AJ. An analysis of the CFH Y402H genotype in AMD patients and controls from the UK, and response to PDT treatment. Eye (Lond). 2008;22(6):849-854. doi: 10.1038/sj.eye.6702830
- Liu K, Xie B. Today and future of age-related macular degeneration. ISRN Ophthalmol. 2012;2012:480212. doi: 10.5402/2012/480212
- Kilic E, Elmazoglu Z, Almammadov T, et al. Activity-based photosensitizers with optimized triplet state characteristics toward cancer cell selective and image guided photodynamic therapy. ACS Appl Bio Mater. 2022;5(6):2754-2767. doi: 10.1021/acsabm.2c00202
- Maghsoodi F, Martin TD, Chi EY. Partial destabilization of amyloid-beta protofibril by methionine photo-oxidation: A molecular dynamic simulation study. ACS Omega. 2023;8(11):10148-10159. doi: 10.1021/acsomega.2c07468
- Liu H, Jiang Y, Wang Z, Zhao L, Yin Q, Liu M. Nanomaterials as carriers to improve the photodynamic antibacterial therapy. Front Chem. 2022;10:1044627. doi: 10.3389/fchem.2022.1044627
- Xia W, Li C, Chen Q, et al. Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation. Acta Pharm Sin B. 2022;12(5):2506-2521. doi: 10.1016/j.apsb.2021.10.022
- Kamimura A, Miki A, Kishi M, et al. Two-year outcome of half-time photodynamic therapy for chronic central serous chorioretinopathy with and without choroidal neovascularization. PLoS One. 2023;18(5):e0284979. doi: 10.1371/journal.pone.0284979
- Yip PP, Woo CF, Tang HH, Ho CK. Triple therapy for neovascular age-related macular degeneration using single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone. Br J Ophthalmol. 2009;93(6):754-758. doi: 10.1136/bjo.2008.150987
- Kumashiro S, Takagi S, Itokawa T, Tajima A, Kobayashi T, Hori Y. Decrease in choroidal blood flow after half and one-third dose verteporfin photodynamic therapy for chronic central serous chorioretinopathy. BMC Ophthalmol. 2021;21(1):241. doi: 10.1186/s12886-021-01980-w
- Stumpf MJ, Schahab N, Nickenig G, Skowasch D, Schaefer CA. Therapy of Pseudoxanthoma elasticum: Current knowledge and future perspectives. Biomedicines. 2021;9(12):1895. doi: 10.3390/biomedicines9121895
- Nawar AE, Shafik HM. Pilot study of ziv-aflibercept in myopic choroidal neovascularisation patients. BMC Ophthalmol. 2020;20(1):414. doi: 10.1186/s12886-020-01679-4
- Gunduz AK, Tetik D. Diagnosis and management strategies in sclerochoroidal calcification: A systematic review. Clin Ophthalmol. 2023;17:2665-2686. doi: 10.2147/OPTH.S399058
- Wang JL, Xi Y, Liu YL, Wang ZH, Zhang Q. Combination of targeted PDT and anti-VEGF therapy for rat CNV by RGD-modified liposomal photocyanine and sorafenib. Invest Ophthalmol Vis Sci. 2013;54(13):7983-7989. doi: 10.1167/iovs.13-13068
- Matlou GG, Abrahamse H. Nanoscale metal-organic frameworks as photosensitizers and nanocarriers in photodynamic therapy. Front Chem. 2022;10:971747. doi: 10.3389/fchem.2022.971747
- Liu H, Yao J, Guo H, et al. Tumor microenvironment-responsive nanomaterials as targeted delivery carriers for photodynamic anticancer therapy. Front Chem. 2020;8:758. doi: 10.3389/fchem.2020.00758
- Jin Y, Guo Y, Yang J, et al. A novel “inside-out” intraocular nanomedicine delivery mode for nanomaterials’ biological effect enhanced choroidal neovascularization occlusion and microenvironment regulation. Adv Mater. 2023;35(10):e2209690. doi: 10.1002/adma.202209690
- Cao D, Zhu J, Guo Y, et al. Dynamically covalent lipid nanoparticles mediate CRISPR-Cas9 genome editing against choroidal neovascularization in mice. Sci Adv. 2025;11(28):eadj0006. doi: 10.1126/sciadv.adj0006
- Ran M, Deng Y, Yan J, et al. Neovascularization-directed bionic eye drops for noninvasive renovation of age-related macular degeneration. Chem Eng J. 2022;450:138291. doi: 10.1016/j.cej.2022.138291
- Zhang J, Shi H, Qin X, et al. Sterically controlled cyclobutane-dioxetane ultrabright afterglow nanosystem for cyclic therapy of choroidal neovascularization in mice. J Am Chem Soc. 2025;147(22):19315-19328. doi: 10.1021/jacs.5c05187
- Xu S, Li J, Long K, Liang X, Wang W. Light-activated anti-vascular combination therapy against choroidal neovascularization. Adv Sci (Weinh). 2024;11(40):e2404218. doi: 10.1002/advs.202404218
- Gao Y, Yu T, Zhang Y, Dang G. Anti-VEGF monotherapy versus photodynamic therapy and anti-VEGF combination treatment for neovascular age-related macular degeneration: A meta-analysis. Invest Ophthalmol Vis Sci. 2018;59(10):4307-4317. doi: 10.1167/iovs.17-23747
- Xu S, Cui K, Long K, et al. Red light-triggered anti-angiogenic and photodynamic combination therapy of age-related macular degeneration. Adv Sci (Weinh). 2023;10(31):e2301985. doi: 10.1002/advs.202301985
- Li Y, Liu SB, Ni W, et al. Near-infrared BODIPY photosensitizer for modulating mitochondrial fusion proteins and inhibiting choroidal neovascularization. ACS Appl Mater Interfaces. 2023;15(41):48027-48037. doi: 10.1021/acsami.3c11053
