Prognostic and predictive significance of altered microRNA expression in pancreatic cancer

Introduction: Pancreatic cancer (PC) remains one of the most lethal malignancies with a dismal 5-year survival rate of 13%. MicroRNAs (miRNAs) have emerged as critical regulators in tumor progression, yet their clinical relevance in PC requires validation through large-scale datasets.
Objective: This study aims to detect irregularities in miRNA expression within PC patients by analyzing data sourced from the Cancer Genome Atlas (TCGA) database.
Methods: Expression profiles of 14 miRNAs in 183 PC patients were analyzed using data from the TCGA database, correlating them with survival, tumor-node-metastasis stage, tumor grade, recurrence, and lymph node metastasis. Molecular mechanisms were explored via target prediction and correlation analysis.
Results: Reduced miR-107 expression and elevated miR-21 expression were each independently linked to worse overall survival (p<0.05). Lower miR-107 levels were correlated with advanced stage (Stage I vs. Stage II: p<0.05) and lymph node metastasis (p<0.05), whereas higher miR-21 levels were associated with higher T stage (T3+4 vs. T1+2: p<0.0001), advanced overall stage (Stage I vs. Stage II: p<0.0001), higher tumor grade (G3+4 vs. G1: p<0.001) and increased recurrence rates (*p<0.05). Mechanistically, the degradation of oncogenic miR-21—mediated by poly(A) polymerase-associated protein D5—was disrupted (p<0.001), leading to the overexpression of miR-21, thereby reducing the expression of tumor suppressor gene programmed cell death 4 (p<0.0001). MiR-107 was a candidate for targeting Notch2 and cyclin-dependent kinase 6 (p<0.05).
Conclusion: MiR-21 and miR-107 are pivotal prognostic biomarkers in PC, warranting further exploration as therapeutic targets.
- Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. doi: 10.3322/caac.21871
- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820
- Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol. 2025;22(6):439-456. doi: 10.1038/s41571-025-01019-9
- Stoop TF, Javed AA, Oba A, et al. Pancreatic cancer. Lancet. 2025;405(10485):1182-1202. doi: 10.1016/S0140-6736(25)00261-2
- Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu, Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2):185-203.e13. doi: 10.1016/j.ccell.2017.07.007
- de Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Res. 2023;83(23):3861-3867. doi: 10.1158/0008-5472.CAN-23-0816
- Huang M, Gong G, Deng Y, et al. Crosstalk between cancer cells and the nervous system. Med Adv. 2023;1(3):173-189. doi: 10.1002/med4.27
- Caban M, Malecka-Wojciesko E. Gaps and opportunities in the diagnosis and treatment of pancreatic cancer. Cancers (Basel). 2023;15(23):5577. doi: 10.3390/cancers15235577
- Yang W, Chen H, Li G, et al. Caprin-1 influences autophagy-induced tumor growth and immune modulation in pancreatic cancer. J Transl Med. 2023;21(1):903. doi: 10.1186/s12967-023-04693-4
- Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-355. doi: 10.1038/nature02871
- Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: From research to therapy. J Cell Sci. 2007;120(Pt 11):1833-1840. doi: 10.1242/jcs.03450
- Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834-838. doi: 10.1038/nature03702
- Jamieson NB, Morran DC, Morton JP, et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res. 2012;18(2):534-545. doi: 10.1158/1078-0432.CCR-11-0679
- Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203-222. doi: 10.1038/nrd.2016.246
- Chun YS, Pawlik TM, Vauthey JN. 8th edition of the AJCC cancer staging manual: Pancreas and hepatobiliary cancers. Ann Surg Oncol. 2018;25(4):845-847. doi: 10.1245/s10434-017-6025-x
- Allen PJ, Kuk D, Castillo CF, et al. Multi-institutional validation study of the american joint commission on cancer (8th edition) changes for T and N staging in patients with pancreatic adenocarcinoma. Ann Surg. 2017;265(1):185-191. doi: 10.1097/SLA.0000000000001763
- Rochefort MM, Ankeny JS, Kadera BE, et al. Impact of tumor grade on pancreatic cancer prognosis: Validation of a novel TNMG staging system. Ann Surg Oncol. 2013;20(13):4322-4329. doi: 10.1245/s10434-013-3159-3
- Wasif N, Ko CY, Farrell J, et al. Impact of tumor grade on prognosis in pancreatic cancer: Should we include grade in AJCC staging? Ann Surg Oncol. 2010;17(9):2312-2320.doi: 10.1245/s10434-010-1071-7
- Hlavsa J, Cecka F, Zaruba P, et al. Tumor grade as significant prognostic factor in pancreatic cancer: Validation of a novel TNMG staging system. Neoplasma. 2018;65(4):637-643. doi: 10.4149/neo_2018_171012N650
- Kong F, Li L, Wang G, Deng X, Li Z, Kong X. VDR signaling inhibits cancer-associated-fibroblasts’ release of exosomal miR-10a-5p and limits their supportive effects on pancreatic cancer cells. Gut. 2019;68(5):950-951. doi: 10.1136/gutjnl-2018-316627
- Ouyang H, Gore J, Deitz S, Korc M. microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene. 2014;33(38):4664-4674. doi: 10.1038/onc.2013.405
- Imamura T, Komatsu S, Ichikawa D, et al. Depleted tumor suppressor miR-107 in plasma relates to tumor progression and is a novel therapeutic target in pancreatic cancer. Sci Rep. 2017;7(1):5708. doi: 10.1038/s41598-017-06137-8
- Abukiwan A, Nwaeburu CC, Bauer N, et al. Dexamethasone-induced inhibition of miR-132 via methylation promotes TGF-beta-driven progression of pancreatic cancer. Int J Oncol. 2019;54(1):53-64. doi: 10.3892/ijo.2018.4616
- Ali S, Ahmad A, Aboukameel A, et al. Deregulation of miR- 146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett. 2014;351(1):134-142. doi: 10.1016/j.canlet.2014.05.013
- Bofill-De Ros X, Gironella M, Fillat C. miR-148a- and miR- 216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Mol Ther. 2014;22(9):1665-1677. doi: 10.1038/mt.2014.98
- Yuan ZJ, Yu C, Hu XF, He Y, Chen P, Ouyang SX. LINC00152 promotes pancreatic cancer cell proliferation, migration and invasion via targeting miR-150. Am J Transl Res. 2020;12(5):2241-2256.
- Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep. 2013;30(3):1223-1230. doi: 10.3892/or.2013.2576
- Lu H, Lu S, Yang D, et al. MiR-20a-5p regulates gemcitabine chemosensitivity by targeting RRM2 in pancreatic cancer cells and serves as a predictor for gemcitabine-based chemotherapy. Biosci Rep. 2019;39(5):BSR20181374. doi: 10.1042/BSR20181374
- Zhao Q, Chen S, Zhu Z, et al. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis. 2018;9(12):1157. doi: 10.1038/s41419-018-1182-9
- Sun FB, Lin Y, Li SJ, Gao J, Han B, Zhang CS. MiR-210 knockdown promotes the development of pancreatic cancer via upregulating E2F3 expression. Eur Rev Med Pharmacol Sci. 2018;22(24):8640-8648. doi: 10.26355/eurrev_201812_16628
- Yue H, Liu L, Song Z. miR-212 regulated by HIF-1alpha promotes the progression of pancreatic cancer. Exp Ther Med. 2019;17(3):2359-2365. doi: 10.3892/etm.2019.7213
- Li Z, Tao Y, Wang X, et al. Tumor-secreted exosomal miR-222 promotes tumor progression via regulating P27 expression and re-localization in pancreatic cancer. Cell Physiol Biochem. 2018;51(2):610-629. doi: 10.1159/000495281
- Ma Y, Yu S, Zhao W, Lu Z, Chen J. miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 2010;298(2):150-158. doi: 10.1016/j.canlet.2010.06.012
- Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29):4677-4684. doi: 10.1200/JCO.2005.05.5194
- Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg. 2008;12(12):2171-2176. doi: 10.1007/s11605-008-0584-x
- Frampton AE, Krell J, Jamieson NB, et al. microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. Eur J Cancer. 2015;51(11):1389-1404. doi: 10.1016/j.ejca.2015.04.006
- Khan K, Cunningham D, Peckitt C, et al. miR-21 expression and clinical outcome in locally advanced pancreatic cancer: Exploratory analysis of the pancreatic cancer Erbitux, radiotherapy and UFT (PERU) trial. Oncotarget. 2016;7(11):12672-12681. doi: 10.18632/oncotarget.7208
- Wang P, Zhuang L, Zhang J, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7(3):334-345. doi: 10.1016/j.molonc.2012.10.011
- Donahue TR, Nguyen AH, Moughan J, et al. Stromal microRNA-21 levels predict response to 5-fluorouracil in patients with pancreatic cancer. J Surg Oncol. 2014;110(8):952-959. doi: 10.1002/jso.23750
- Boele J, Persson H, Shin JW, et al. PAPD5-mediated 3’ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A. 2014;111(31):11467-11472. doi: 10.1073/pnas.1317751111
- Newie I, Sokilde R, Persson H, et al. HER2-encoded mir- 4728 forms a receptor-independent circuit with miR-21-5p through the non-canonical poly(A) polymerase PAPD5. Sci Rep. 2016;6:35664. doi: 10.1038/srep35664
- Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128-2136. doi: 10.1038/sj.onc.1210856
- Wei X, Wang W, Wang L, et al. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 2016;5(4):693-702. doi: 10.1002/cam4.626
- Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S, Navab R. MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One. 2014;9(8):e103698. doi: 10.1371/journal.pone.0103698
- Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328-14336. doi: 10.1074/jbc.M611393200
- Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28(17):5369-5380. doi: 10.1128/MCB.00479-08
- Feng L, Xie Y, Zhang H, Wu Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol. 2012;29(2):856-863. doi: 10.1007/s12032-011-9823-1
- Lee KH, Lotterman C, Karikari C, et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. 2009;9(3):293-301. doi: 10.1159/000186051
- Li XY, Luo QF, Wei CK, Li DF, Li J, Fang L. MiRNA-107 inhibits proliferation and migration by targeting CDK8 in breast cancer. Int J Clin Exp Med. 2014;7(1):32-40.
- Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasuda J. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One. 2009;4(8):e6677. doi: 10.1371/journal.pone.0006677
- Zhang Z, Zhang L, Yin ZY, et al. miR-107 regulates cisplatin chemosensitivity of A549 non small cell lung cancer cell line by targeting cyclin dependent kinase 8. Int J Clin Exp Pathol. 2014;7(10):7236-7241.
- Chen L, Zhang R, Li P, et al. P53-induced microRNA-107 inhibits proliferation of glioma cells and down-regulates the expression of CDK6 and Notch-2. Neurosci Lett. 2013;534:327-332. doi: 10.1016/j.neulet.2012.11.047
- Chen L, Chen XR, Chen FF, et al. MicroRNA-107 inhibits U87 glioma stem cells growth and invasion. Cell Mol Neurobiol. 2013;33(5):651-657. doi: 10.1007/s10571-013-9927-6
- Chen L, Chen XR, Zhang R, et al. MicroRNA-107 inhibits glioma cell migration and invasion by modulating Notch2 expression. J Neurooncol. 2013;112(1):59-66. doi: 10.1007/s11060-012-1037-7
- Chen L, Li ZY, Xu SY, et al. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cell Mol Neurobiol. 2016;36(1):113-120. doi: 10.1007/s10571-015-0225-3
- Yamakuchi M, Lotterman CD, Bao C, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A. 2010;107(14):6334-6339. doi: 10.1073/pnas.0911082107
- Molina-Pinelo S, Carnero A, Rivera F, et al. MiR-107 and miR-99a-3p predict chemotherapy response in patients with advanced colorectal cancer. BMC Cancer. 2014;14:656. doi: 10.1186/1471-2407-14-656
- Zhou C, Li G, Zhou J, Han N, Liu Z, Yin J. miR-107 activates ATR/Chk1 pathway and suppress cervical cancer invasion by targeting MCL1. PLoS One. 2014;9(11):e111860. doi: 10.1371/journal.pone.0111860
- Wang WX, Kyprianou N, Wang X, Nelson PT. Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res. 2010;70(22):9137-9142. doi: 10.1158/0008-5472.CAN-10-1684
- Song N, Ma X, Li H, et al. microRNA-107 functions as a candidate tumor suppressor gene in renal clear cell carcinoma involving multiple genes. Urol Oncol. 2015;33(5):205.e1-11. doi: 10.1016/j.urolonc.2015.02.003
- Goldberg AD, Allis CD, Bernstein E. Epigenetics: A landscape takes shape. Cell. 2007;128(4):635-638. doi: 10.1016/j.cell.2007.02.006
- Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669-681. doi: 10.1016/j.cell.2007.01.033
- Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683-692. doi: 10.1016/j.cell.2007.01.029
- Baylin SB, Chen WY. Aberrant gene silencing in tumor progression: Implications for control of cancer. Cold Spring Harb Symp Quant Biol. 2005;70:427-433. doi: 10.1101/sqb.2005.70.010
- Mela A, Rdzanek E, Tysarowski A, et al. The impact of changing the funding model for genetic diagnostics and improved access to personalized medicine in oncology. Expert Rev Pharmacoecon Outcomes Res. 2023;23(1):43-54. doi: 10.1080/14737167.2023.2140139