Construction and validation of a prognostic signature based on related genes in hepatocellular carcinoma

Introduction: Given the poor prognosis associated with hepatocellular carcinoma (HCC), identifying reliable biomarkers is critical to aid in prognostication and customized treatment planning.
Objective: This study aimed to develop a prognostic gene signature based on anoikis- and autophagy-related genes (AARGs) to predict HCC prognosis.
Methods: We analyzed differentially expressed AARGs associated with HCC prognosis using messenger RNA expression profiles and clinicopathological data from the Cancer Genome Atlas Liver Hepatocellular Carcinoma Database. Validation was performed using data from the International Cancer Genome Consortium. AARG signatures were constructed using univariate Cox regression and the least absolute shrinkage and selection operator method.
Results: We identified 13 AARGs, of which nine showed significant associations with overall survival (OS). Three AARGs—baculoviral IAP repeat containing 5, mitogen-activated protein kinase 3, and BRI1-associated kinase 1—were selected to establish the prognostic AARGs signature. Statistical analyses confirmed the prognostic capacity of the model. Gene set enrichment analysis was performed to explore potential molecular mechanisms. Further investigations included assessments of clinical parameters, immune landscape, immune checkpoint blockade response, tumor stemness, and chemotherapy sensitivity. Immunohistochemistry was conducted to compare protein expression between normal and tumor tissues. Patients in the high-risk group exhibited advanced tumor stage, shorter survival time, and poorer prognosis, along with anoikis resistance, elevated autophagy, and immunosuppression. The nomogram incorporating the AARG signature showed strong predictive performance for OS.
Conclusion: We developed and validated a new AARGs-based signature that effectively predicts prognosis for HCC patients.
- Yang X, Zhang D, Liu S, Li X, Hu W, Han C. KLF4 suppresses the migration of hepatocellular carcinoma by transcriptionally upregulating monoglyceride lipase. Am J Cancer Res. 2018;8(6):1019-1029.
- McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: Present and future. Clin Liver Dis. 2011;15(2):223-243, vii-x. doi: 10.1016/j.cld.2011.03.006
- de Boer MT, Molenaar IQ, Porte RJ. Impact of blood loss on outcome after liver resection. Dig Surg. 2007;24(4):259-264. doi: 10.1159/000103656
- Li M, Tang Y, Wang D, et al. Sphingosine-1-phosphate transporter spinster homolog 2 is essential for iron-regulated metastasis of hepatocellular carcinoma. Mol Ther. 2022;30(2):703-713. doi: 10.1016/j.ymthe.2021.09.012
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33. doi: 10.3322/caac.21654
- Yang KD, Zhang X, Shao MC, Wang LN. Aconite aqueous extract inhibits the growth of hepatocellular carcinoma through CCL2-dependent enhancement of natural killer cell infiltration. J Integr Med. 2023;21(6):575-583. doi: 10.1016/j.joim.2023.10.002
- Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747-1756. doi: 10.1101/gr.239244.118
- Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Crit Rev Oncol Hematol. 2019;140:17-27. doi: 10.1016/j.critrevonc.2019.05.009
- Wu J, Liu W, Qiu X, et al. A noninvasive approach to evaluate tumor immune microenvironment and predict outcomes in hepatocellular carcinoma. Phenomics. 2023;3(6):549-564. doi: 10.1007/s43657-023-00136-8
- Han HJ, Sung JY, Kim SH, et al. Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Lett. 2021;508:59-72. doi: 10.1016/j.canlet.2021.03.011
- Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007
- Zhou X, Li L, Guo X, et al. HBXIP induces anoikis resistance by forming a reciprocal feedback loop with Nrf2 to maintain redox homeostasis and stabilize Prdx1 in breast cancer. NPJ Breast Cancer. 2022;8(1):7. doi: 10.1038/s41523-021-00374-x
- Xiao T, Xu Z, Zhou Y, et al. Loss of TP53I11 enhances the extracellular matrix-independent survival by promoting activation of AMPK. IUBMB Life. 2019;71(2):183-191. doi: 10.1002/iub.1949
- Venetsanakos E, Mirza A, Fanton C, Romanov SR, Tlsty T, McMahon M. Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. Exp Cell Res. 2002;273(1):21-33. doi: 10.1006/excr.2001.5424
- Middlemas DS, Lindberg RA, Hunter T. trkB, a neural receptor protein-tyrosine kinase: Evidence for a full-length and two truncated receptors. Mol Cell Biol. 1991;11(1):143-153. doi: 10.1128/mcb.11.1.143-153.1991
- Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal. 2012;24(2):393-401. doi: 10.1016/j.cellsig.2011.10.005
- She K, Yang W, Li M, Xiong W, Zhou M. FAIM2 promotes non-small cell lung cancer cell growth and bone metastasis by activating the Wnt/β-catenin pathway. Front Oncol. 2021;11:690142. doi: 10.3389/fonc.2021.690142
- McCormick KD, Ghosh A, Trivedi S, et al. Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis. 2016;37(5):522-529. doi: 10.1093/carcin/bgw032
- Zhang X, Cheng SL, Bian K, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6(4):2277-2289. doi: 10.18632/oncotarget.2956
- Chen Y, Lin QX, Xu YT, et al. An anoikis-related gene signature predicts prognosis and reveals immune infiltration in hepatocellular carcinoma. Front Oncol. 2023;13:1158605. doi: 10.3389/fonc.2023.1158605
- Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-1075. doi: 10.1038/nature06639
- Scott RC, Juhász G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007;17(1):1-11. doi: 10.1016/j.cub.2006.10.053
- Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19(1):12. doi: 10.1186/s12943-020-1138-4
- Li Y, Hahn T, Garrison K, et al. The vitamin E analogue α-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res. 2012;72(14):3535-3545. doi: 10.1158/0008-5472.CAN-11-3103
- Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581(7806):100-105. doi: 10.1038/s41586-020-2229-5
- Fang Q, Chen H. Development of a novel autophagy-related prognostic signature and nomogram for hepatocellular carcinoma. Front Oncol. 2020;10:591356. doi: 10.3389/fonc.2020.591356
- Long XH, Zhou YF, Lan M, Huang SH, Li Liu Z, Shu Y. Valosin-containing protein promotes metastasis of osteosarcoma through autophagy induction and anoikis inhibition via the ERK/NF-κβ/beclin-1 signaling pathway. Oncol Lett. 2019;18(4):3823-3829. doi: 10.3892/ol.2019.10716
- Palorini R, Votta G, Pirola Y, et al. Protein kinase a activation promotes cancer cell resistance to glucose starvation and anoikis. PLoS Genet. 2016;12(3):e1005931. doi: 10.1371/journal.pgen.1005931
- Wu XN, Su D, Mei YD, et al. Identified lung adenocarcinoma metabolic phenotypes and their association with tumor immune microenvironment. Cancer Immunol Immunother. 2021;70(10):2835-2850. doi: 10.1007/s00262-021-02896-6
- Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: Integrating information about genes, proteins and diseases. Trends Genet. 1997;13(4):163. doi: 10.1016/s0168-9525(97)01103-7
- Deng Y, Zhu L, Cai H, Wang G, Liu B. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases. Cell Prolif. 2018;51(3):e12403. doi: 10.1111/cpr.12403
- Walter W, Sánchez-Cabo F, Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912-2914. doi: 10.1093/bioinformatics/btv300
- Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. doi: 10.1126/scisignal.2004088
- Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-404. doi: 10.1158/2159-8290.cd-12-0095
- Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287. doi: 10.1089/omi.2011.0118
- Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1-22. doi: 10.18637/jss.v033.i01
- Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: The Hosmer- Lemeshow test revisited. Crit Care Med. 2007;35(9):2052- 2056.doi: 10.1097/01.CCM.0000275267.64078.B0
- Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173(2):338-354.e15.
- Kerr KF, Brown MD, Zhu K, Janes H. Assessing the clinical impact of risk prediction models with decision curves: Guidance for correct interpretation and appropriate use. J Clin Oncol. 2016;34(21):2534-2540. doi: 10.1200/jco.2015.65.5654
- Fabbri L, Dufies M, Lacas-Gervais S, et al. Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-ΔC in clear cell Renal Cell Carcinoma patients. Theranostics. 2020;10(6):2696-713. doi: 10.7150/thno.41001
- Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32(30):5381-5397. doi: 10.1002/sim.5958
- Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550. doi: 10.1073/pnas.0506580102
- Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108-e110. doi: 10.1158/0008-5472.can-17-0307
- Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453-457. doi: 10.1038/nmeth.3337
- Finotello F, Mayer C, Plattner C, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11(1):34.doi: 10.1101/223180
- Aran D, Hu Z, Butte AJ. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. doi: 10.1101/114165
- Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):218. doi: 10.1186/s13059-016-1113-y
- Racle J, Gfeller D. EPIC: A tool to estimate the proportions of different cell types from bulk gene expression data. Methods Mol Biol. 2020;2120:233-248. doi: 10.1007/978-1-0716-0327-7_17
- Li X, Li Y, Yu X, Jin F. Identification and validation of stemness-related lncRNA prognostic signature for breast cancer. J Transl Med. 2020;18(1):331. doi: 10.1186/s12967-020-02497-4
- Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248-262. doi: 10.1101/056101
- Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411):eaar3593.
- Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550-1558.
- Cohen R, Hain E, Buhard O, et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol. 2019;5(4):551-555. doi: 10.1001/jamaoncol.2018.4942
- Kudo M, Kang YK, Park JW, et al. Regional differences in efficacy, safety, and biomarkers for second-line axitinib in patients with advanced hepatocellular carcinoma: from a randomized phase II study. Liver Cancer. 2018;7(2):148-164. doi: 10.1159/000484620
- Han EK, Leverson JD, McGonigal T, et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene. 2007;26(38):5655-5661. doi: 10.1038/sj.onc.1210343
- Sebastian M, Reck M, Waller CF, et al. The efficacy and safety of BI 2536, a novel Plk-1 inhibitor, in patients with stage IIIB/IV non-small cell lung cancer who had relapsed after, or failed, chemotherapy: Results from an open-label, randomized phase II clinical trial. J Thorac Oncol. 2010;5(7):1060-1067. doi: 10.1097/jto.0b013e3181d95dd4
- Li P, Song R, Yin F, et al. circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. 2022;30(1):431-447.
- Li F, Huang T, Tang Y, et al. Utidelone inhibits growth of colorectal cancer cells through ROS/JNK signaling pathway. Cell Death Dis. 2021;12(4):338. doi: 10.1038/s41419-021-03619-6
- Hande KR. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur J Cancer. 1998;34(10): 1514-1521. doi: 10.1016/s0959-8049(98)00228-7
- Fujino T, Suda K, Koga T, et al. Foretinib can overcome common on-target resistance mutations after capmatinib/ tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. J Hematol Oncol. 2022;15(1):79. doi: 10.1186/s13045-022-01299-z
- Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497-1500.
- Muggia F, Diaz I, Peters GJ. Nucleoside and nucleobase analogs in cancer treatment: Not only sapacitabine, but also gemcitabine. Expert Opin Investig Drugs. 2012;21(4): 403-408. doi: 10.1517/13543784.2012.666236
- Knox C, Law V, Jewison T, et al. DrugBank 3.0: A comprehensive resource for “omics” research on drugs. Nucleic Acids Res. 2011;39(Database issue):D1035-D1041. doi: 10.1093/nar/gkq1126
- Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955-D961. doi: 10.1093/nar/gks1111
- Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-W102. doi: 10.1093/nar/gkx247
- Nusinow DP, Szpyt J, Ghandi M, et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell. 2020;180(2):387-402.e16.
- Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28(12):1248-1250.doi: 10.1038/nbt1210-1248
- Mathai RA, Vidya RVS, Reddy BS, et al. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: Implications in the precision oncology. J Clin Med. 2019;8(3):373. doi: 10.3390/jcm8030373
- Cheng Q, Huang C, Cao H, et al. A novel prognostic signature of transcription factors for the prediction in patients with GBM. Front Genet. 2019;10:906.
- Peng Z, Chen Y, Cao H, et al. Protein disulfide isomerases are promising targets for predicting the survival and tumor progression in glioma patients. Aging (Albany NY). 2020;12(3):2347-2372. doi: 10.18632/aging.102748
- Jin Y, Chen J, Feng Z, et al. The expression of Survivin and NF-κB associated with prognostically worse clinicopathologic variables in hepatocellular carcinoma. Tumour Biol. 2014;35(10):9905-9910. doi: 10.1007/s13277-014-2279-0
- Deng R, Zhang HL, Huang JH, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy. 2021;17(10):3011-3029. doi: 10.1080/15548627.2020.1850609
- Xian H, Liou YC. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy. Autophagy. 2019;15(12):2107-2125. doi: 10.1080/15548627.2019.1596494
- Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment. Adv Mater. 2020;32(22):e2000055. doi: 10.1002/adma.202000055
- Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141(1):52-67. doi: 10.1016/j.cell.2010.03.015
- Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482-1492. doi: 10.1093/annonc/mdw168
- Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151-172. doi: 10.1038/s41571-021-00573-2
- Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66(1):157-167. doi: 10.1136/gutjnl-2015-310514
- Chen D, Li X, Li H, Wang K, Tian X. Identification of immune-related prognostic mRNA and lncRNA in patients with hepatocellular carcinoma. J Oncol. 2022;2022:5313149.
- He Y, Luo J, Zhang G, et al. Single-cell profiling of human CD127(+) innate lymphoid cells reveals diverse immune phenotypes in hepatocellular carcinoma. Hepatology. 2022;76(4):1013-1029. doi: 10.1002/hep.32444
- Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Investig. 2013;123(5):1911-1918.
- Wang L, Li N, Fan X, et al. Circulating CTLA-4 levels and CTLA4 polymorphisms associate with disease condition and progression and hepatocellular carcinoma patients’ survival in chronic hepatitis B virus infection. Int Immunopharmacol. 2020;82:106377. doi: 10.1016/j.intimp.2020.106377