AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025150101
REVIEW ARTICLE

Dynamics of FLT3 mutations in acute myeloid leukemia: A systematic review and meta-analysis of shifts between diagnosis and relapsed/refractory disease

Lais Teixeira1 Camilla Correia1 Alini Ponte1 Diego Miranda1 Felipe Feistauer1 Marco Aurélio Salvino1*
Show Less
1 Postgraduate Program in Medicine and Health, Professor Edgard Santos University Hospital, Medical School, Universidade Federal da Bahia (UFBA), Salvador (BA), Brazil
Received: 10 April 2025 | Revised: 17 June 2025 | Accepted: 16 July 2025 | Published online: 7 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Acute myeloid leukemia (AML) is a hematologic malignancy with a generally poor prognosis. Technological advances in molecular diagnosis have identified genetic alterations driving AML pathogenesis, among which FMS-like tyrosine kinase 3 (FLT3) mutations are significant. These mutations hold prognostic value and are increasingly recognized as potential markers for disease monitoring. This systematic review and meta-analysis aimed to assess the prevalence of changes in FLT3 mutational status in adult patients with relapsed or refractory AML compared to their status at initial diagnosis. A relevant proportion of patients who were FLT3-wildtype at diagnosis were found to be FLT3-mutated on relapse, emphasizing the importance of continuous mutation monitoring. Subgroup analyses were also performed, and mutation shift rates were reported across both FLT3 internal tandem duplication and tyrosine kinase domain subtypes. These findings illustrate the genetic evolution of leukemic clones and support the need for tailored therapeutic approaches based on the mutational profile at different disease stages. This study further highlights the diagnostic and clinical utility of routine molecular reassessment and offers practical recommendations for integrating FLT3 retesting into standard AML management.

Keywords
Acute myeloid leukemia
FMS-like tyrosine kinase 3 mutation
FMS-like tyrosine kinase 3
Molecular biology
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European leukemia net. Blood. 2010;115(3):453-474. doi: 10.1182/blood-2009-07-235358

 

  1. Campos C, Orathes Ponte Silva AM, Feistauer F, Teixeira Da Silva L, Favano T, Salvino MA. 10-year real-world data on acute myeloid leukemia: The paradigm of a public health center in Brazil. J Bone Marrow Transplant Cell Ther. 2024;5(2):245. doi: 10.46765/2675-374X.2024v5n2p245

 

  1. Feistauer F, Salvino M, Batista M, et al. Challenges to achieving BMT in the treatment of AML in Brazil: Bahia university hematology center experience. J Bone Marrow Transplant Cell Ther. 2023;4(3):214. doi: 10.46765/2675-374X.2023v4n3p214

 

  1. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966-984. doi: 10.1038/s41375-020-0776-2

 

  1. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911-1918.

 

  1. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074-3080.

 

  1. Reindl C, Spiekermann K. From kinases to cancer: Leakiness, loss of autoinhibition and leukemia. Cell Cycle. 2006;5(6):599-602.doi: 10.4161/cc.5.6.2586

 

  1. Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Signal transduction of oncogenic Flt3. Int J Hematol. 2005;82(2):93-99. doi: 10.1532/IJH97.05090

 

  1. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3- activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99:4326-4335. doi: 10.1182/blood.v99.12.4326

 

  1. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434-2439. doi: 10.1182/blood.v97.8.2434

 

  1. Abu-Duhier FM, Goodeve AC, Wilson GA, et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol. 2000;111:190-195. doi: 10.1046/j.1365-2141.2000.02317.x

 

  1. Blau O, Berenstein R, Sindram A, Blau IW. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma. 2013;54(1):145-152. doi: 10.3109/10428194.2012.704999

 

  1. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589-3595. doi: 10.1182/blood.v97.11.3589

 

  1. Choudhary C, Schwable J, Brandts C, et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood. 2005;106:265-273. doi: 10.1182/blood-2004-07-2942

 

  1. Campregher PV, Pinto De Mattos VR, Salvino MA, Souza Santos FP, Hamerschlak N. Successful treatment of post-transplant relapsed acute myeloid leukemia with FLT3 internal tandem duplication using the combination of induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Report of three cases. Hematol Transfus Cell Ther.2020;42(1):89-92.

 

  1. Fröhling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML study group Ulm. Blood. 2002;100(13):4372-4380. doi: 10.1182/blood-2002-05-1440

 

  1. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: Correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100:59-66. doi: 10.1182/blood.v100.1.59

 

  1. Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345-1377. doi: 10.1182/blood.2022016867

 

  1. Chen EC, Shimony S, Luskin MR, Stone RM. Biology and management of acute myeloid leukemia with mutated NPM1. Am J Hematol. 2025;100(4):652-665. doi: 10.1002/ajh.27600

 

  1. Williams AB, Nguyen B, Li L, et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia. 2013;27(1):48-55. doi: 10.1038/leu.2012.191

 

  1. Lam SSY, Leung AYH. Overcoming resistance to FLT3 inhibitors in the treatment of FLT3-mutated AML. Int J Mol Sci. 2020;21(4):1537. doi: 10.3390/ijms21041537

 

  1. Baker SD, Zimmerman EI, Wang YD, et al. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3- ITD-positive acute myeloid leukemia. Clin Cancer Res. 2013;19(20):5758-5768. doi: 10.1158/1078-0432.CCR-13-1323

 

  1. Garg M, Nagata Y, Kanojia D, et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3‐ITD at diagnosis and relapse. Blood. 2015;126(22):2491‐2501. doi: 10.1182/blood‐2015‐05‐646240

 

  1. Gupta A, Viswanatha DS, Patnaik MM. FLT3 mutation testing in acute myeloid leukemia. JAMA Oncol. 2017;3(7):991-992. doi: 10.1001/jamaoncol.2017.0257

 

  1. Lin TL, Williams T, He J, et al. Rates of complete diagnostic testing for patients with acute myeloid leukemia. Cancer Med. 2015;4:519-522. doi: 10.1002/cam4.426

 

  1. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: Implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100(7):2393-2398. doi: 10.1182/blood-2002-02-0420

 

  1. Nakamura H, Inokuchi K, Yamaguchi H, Dan K. Abnormalities of p51, p53, FLT3 and N-ras genes and their prognostic value in relapsed acute myeloid leukemia. J Nippon Med Sch. 2004;71(4):270-278. doi: 10.1272/jnms.71.270

 

  1. Tiesmeier J, Müller-Tidow C, Westermann A, et al. Evolution of FLT3-ITD and D835 activating point mutations in relapsing acute myeloid leukemia and response to salvage therapy. Leuk Res. 2004;28(10):1069-1074. doi: 10.1016/j.leukres.2004.02.009

 

  1. Suzuki T, Kiyoi H, Ozeki K, et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood. 2005;106(8):2854-2861. doi: 10.1182/blood-2005-04-1733

 

  1. Cloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006;20(7):1217-1220. doi: 10.1038/sj.leu.2404246

 

  1. Palmisano M, Grafone T, Ottaviani E, Testoni N, Baccarani M, Martinelli G. NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia. Haematologica. 2007;92(9):1268-1269. doi: 10.3324/haematol.11202

 

  1. Schnittger S, Kern W, Tschulik C, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220-2231. doi: 10.1182/blood-2009-03-213389

 

  1. McCormick SR, McCormick MJ, Grutkoski PS, et al. FLT3 mutations at diagnosis and relapse in acute myeloid leukemia: Cytogenetic and pathologic correlations, including cuplike blast morphology. Arch Pathol Lab Med. 2010;134(8):1143-1151. doi: 10.5858/2009-0292-OA.1

 

  1. Wang ES, Sait SN, Gold D, et al. Genomic, immunophenotypic, and NPM1/FLT3 mutational studies on 17 patients with normal karyotype acute myeloid leukemia (AML) followed by aberrant karyotype AML at relapse. Cancer Genet Cytogenet. 2010;202(2):101-107. doi: 10.1016/j.cancergencyto.2010.07.117

 

  1. Wakita S, Yamaguchi H, Omori I, et al. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia. 2013;27(5):1044-1052. doi: 10.1038/leu.2012.317

 

  1. Janke H, Pastore F, Schumacher D, et al. Activating FLT3 mutants show distinct gain-of-function phenotypes in vitro and a characteristic signaling pathway profile associated with prognosis in acute myeloid leukemia. PLoS One. 2014;9(3):e89560. doi: 10.1371/journal.pone.0089560

 

  1. Nakano Y, Kiyoi H, Miyawaki S, et al. Molecular evolution of acute myeloid leukaemia in relapse: Unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol. 1999;104(4):659-664. doi: 10.1046/j.1365-2141.1999.01256.x

 

  1. Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: A comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387-2392. doi: 10.1182/blood-2002-01-0195

 

  1. Schnittger S, Schoch C, Kern W, Hiddemann W, Haferlach T. FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol. 2004;112(1-2):68-78. doi: 10.1159/000077561

 

  1. Park SH, Chi HS, Min SK, et al. Prognostic significance of the FLT3 ITD mutation in patients with normal-karyotype acute myeloid leukemia in relapse. Korean J Hematol. 2011;46(2):88-95. doi: 10.5045/kjh.2011.46.2.88

 

  1. Abdelhamid E, Preudhomme C, Helevaut N, et al. Minimal residual disease monitoring based on FLT3 internal tandem duplication in adult acute myeloid leukemia. Leuk Res. 2012;36(3):316-323. doi: 10.1016/j.leukres.2011.11.002

 

  1. Bachas C, Schuurhuis GJ, Assaraf YG, et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia. 2012;26(6):1313-1320. doi: 10.1038/leu.2011.383

 

  1. Nazha A, Cortes J, Faderl S, et al. Activating internal tandem duplication mutations of the fms-like tyrosine kinase-3 (FLT3-ITD) at complete response and relapse in patients with acute myeloid leukemia. Haematologica. 2012;97(8):1242-1245. doi: 10.3324/haematol.2012.062638

 

 

  1. Gourdin TS, Zou Y, Ning Y, et al. High frequency of rare structural chromosome abnormalities at relapse of cytogenetically normal acute myeloid leukemia with FLT3 internal tandem duplication. Cancer Genet. 2014;207:467-473. doi: 10.1016/j.cancergen.2014.10.002

 

  1. Shih LY, Huang CF, Wu JH, et al. Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: A comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin Cancer Res. 2004;10(4):1326-1332. doi: 10.1158/1078-0432.ccr-0835-03

 

  1. Warren M, Luthra R, Yin CC, et al. Clinical impact of change of FLT3 mutation status in acute myeloid leukemia patients. Mod Pathol. 2012;25(10):1405-1412. doi: 10.1038/modpathol.2012.88

 

  1. Levis MJ, Hamadani M, Logan B, et al. Gilteritinib as post-transplant maintenance for AML with internal tandem duplication mutation of FLT3. J Clin Oncol. 2024;42(15):1766-1775. doi: 10.1200/JCO.23.02474

 

  1. Oduro KA Jr., Spivey T, Moore EM, et al. Clonal dynamics and relapse risk revealed by high-sensitivity FLT3-internal tandem duplication detection in acute myeloid leukemia. Mod Pathol. 2024;37(9):100534. doi: 10.1016/j.modpat.2024.100534

 

  1. Smith CC, Levis MJ, Perl AE, Hill JE, Rosales M, Bahceci E. Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib. Blood Adv. 2022;6(7):2144-2155. doi: 10.1182/bloodadvances.2021006489
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing