AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025160123
SHORT COMMUNICATION

Causal relationships between cathepsins and psychiatric disorders: A Mendelian randomization study

Zhao Hui Yang1 Ao Wang2 Ke Yi1,2*
Show Less
1 Department of Orthopedics, Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases / Hubei Provincial Clinical Research Center for Nephrology, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
2 Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
Received: 14 April 2025 | Revised: 2 May 2025 | Accepted: 8 May 2025 | Published online: 6 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Observational epidemiological studies investigating the association between cathepsins and psychiatric disorders have reported inconsistent results. Objectives: The objective of this study was to evaluate the potential causal effects of cathepsins on psychiatric disorders using Mendelian randomization (MR) analysis. Methods: A two-sample MR analysis was conducted using single-nucleotide polymorphisms as instrumental variables to examine the effects of cathepsins on psychiatric disorders. The study assessed both the individual and combined impacts of various cathepsins through univariable and multivariable MR analyses. Statistical techniques included the inverse-variance weighted method, along with supplementary approaches such as MR-egger regression, to ensure a comprehensive assessment. Results: Univariable MR analysis demonstrated a significant correlation between cathepsin G and bipolar disorder, as well as between cathepsin S and depression. In addition, multivariate MR analysis further confirmed that elevated levels of cathepsin G were significantly linked to an increased risk of bipolar disorder, while elevated levels of cathepsin S were linked to a higher risk of depression – even after adjusting for the effects of other cathepsins. Reverse MR and sensitivity analyses supported the robustness of these findings. Conclusion: This study suggests that cathepsin G and S are casually associated with an increased risk of bipolar disorder and depression, respectively. However, due to the limitations of the MR approach, including pleiotropic effects, these associations should be considered with caution.

Keywords
Causal effect
Cathepsins
Mendelian randomization
Psychiatric disorders
Risk
Funding
None.
Conflict of interest
The authors declare that they have no conflicts of interest.
References
  1. Jauhar S, Johnstone M, McKenna PJ. Schizophrenia. Lancet. 2022;399(10323):473-486. doi: 10.1016/s0140-6736(21)01730-x

 

  1. Bauer MS. Bipolar disorder. Ann Intern Med. 2022;175(7):Itc97-itc112. doi: 10.7326/aitc202207190

 

  1. McCarron RM, Shapiro B, Rawles J, Luo J. Depression. Ann Intern Med. 2021;174(5):Itc65-itc80. doi: 10.7326/aitc202105180

 

  1. Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299-2312. doi: 10.1016/s0140-6736(18)31948-2

 

  1. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia-an overview. JAMA Psychiatry. 2020;77(2):201-210. doi: 10.1001/jamapsychiatry.2019.3360

 

  1. Szuhany KL, Simon NM. Anxiety disorders: A review. JAMA. 2022;328(24):2431-2445. doi: 10.1001/jama.2022.22744

 

  1. Hirota T, King BH. Autism spectrum disorder: A review. JAMA. 2023;329(2):157-168. doi: 10.1001/jama.2022.23661

 

  1. Egede LE, Gebregziabher M, Walker RJ, Payne EH, Acierno R, Frueh BC. Trajectory of cost overtime after psychotherapy for depression in older Veterans via telemedicine. J Affect Disord. 2017;207:157-162. doi: 10.1016/j.jad.2016.09.044

 

  1. Kovács G, Almási T, Millier A, et al. Direct healthcare cost of schizophrenia - European overview. Eur Psychiatry. 2018;48:79-92. doi: 10.1016/j.eurpsy.2017.10.008

 

  1. Zuvekas SH, Grosse SD, Lavelle TA, Maenner MJ, Dietz P, Ji X. Healthcare costs of pediatric autism spectrum disorder in the United States, 2003-2015. J Autism Dev Disord. 2021;51(8):2950-2958. doi: 10.1007/s10803-020-04704-z

 

  1. Genovese A, Butler MG. Clinical assessment, genetics, and treatment approaches in autism spectrum disorder (ASD). Int J Mol Sci. 2020;21(13):4726. doi: 10.3390/ijms21134726

 

  1. O’Connell KS, Coombes BJ. Genetic contributions to bipolar disorder: Current status and future directions. Psychol Med. 2021;51(13):2156-2167. doi: 10.1017/s0033291721001252

 

  1. Smoller JW. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology. 2016;41(1):297-319. doi: 10.1038/npp.2015.266

 

  1. Rantala MJ, Luoto S, Borráz-León JI, Krams I. Schizophrenia: The new etiological synthesis. Neurosci Biobehav Rev. 2022;142:104894. doi: 10.1016/j.neubiorev.2022.104894

 

  1. Yao S, Larsson H, Norring C, et al. Genetic and environmental contributions to diagnostic fluctuation in anorexia nervosa and bulimia nervosa. Psychol Med. 2021;51(1):62-69. doi: 10.1017/s0033291719002976

 

  1. Ohi K, Otowa T, Shimada M, Sasaki T, Tanii H. Shared genetic etiology between anxiety disorders and psychiatric and related intermediate phenotypes. Psychol Med. 2020;50(4):692-704. doi: 10.1017/s003329171900059x

 

  1. Martínez AL, Brea J, Rico S, De Los Frailes MT, Loza MI. Cognitive deficit in schizophrenia: From etiology to novel treatments. Int J Mol Sci. 2021;22(18):9905. doi: 10.3390/ijms22189905

 

  1. Bralten J, Widomska J, Witte W, et al. Shared genetic etiology between obsessive-compulsive disorder, obsessive-compulsive symptoms in the population, and insulin signaling. Transl Psychiatry. 2020;10(1):121. doi: 10.1038/s41398-020-0793-y

 

  1. Chen C, Ahmad MJ, Ye T, et al. Cathepsin B regulates mice granulosa cells’ apoptosis and proliferation in vitro. Int J Mol Sci. 2021;22(21):11827. doi: 10.3390/ijms222111827

 

  1. Kumari S, Mukherjee A, Mukhopadhyay CK. Dopamine promotes cathepsin B-mediated amyloid precursor protein degradation by reactive oxygen species-sensitive mechanism in neuronal cell. Mol Cell Biochem. 2019;454(1-2):153-163. doi: 10.1007/s11010-018-3460-3

 

  1. Di YQ, Han XL, Kang XL, et al. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy. 2021;17(5):1170-1192. doi: 10.1080/15548627.2020.1752497

 

  1. Hossain MI, Marcus JM, Lee JH, et al. Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy. 2021;17(6):1330-1348. doi: 10.1080/15548627.2020.1761219

 

  1. Mijanović O, Branković A, Panin AN, et al. Cathepsin B: A sellsword of cancer progression. Cancer Lett. 2019;449:207-214. doi: 10.1016/j.canlet.2019.02.035

 

  1. Shi Q, Shen Q, Liu Y, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell. 2022;40(10):1207-1222.e10. doi: 10.1016/j.ccell.2022.08.012

 

  1. Di Spiezio A, Marques ARA, Schmidt L, et al. Analysis of cathepsin B and cathepsin L treatment to clear toxic lysosomal protein aggregates in neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis. 2021;1867(10):166205. doi: 10.1016/j.bbadis.2021.166205

 

  1. Jing Y, Shi J, Lu B, et al. Association of circulating cathepsin s and cardiovascular disease among patients with type 2 diabetes: A cross-sectional community-based study. Front Endocrinol (Lausanne). 2021;12:615913. doi: 10.3389/fendo.2021.615913

 

  1. Pišlar A, Bolčina L, Kos J. New insights into the role of cysteine cathepsins in neuroinflammation. Biomolecules. 2021;11(12):1796. doi: 10.3390/biom11121796

 

  1. Niemeyer C, Matosin N, Kaul D, Philipsen A, Gassen NC. The role of cathepsins in memory functions and the pathophysiology of psychiatric disorders. Front Psychiatry. 2020;11:718. doi: 10.3389/fpsyt.2020.00718

 

  1. Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016;24(2):332-340. doi: 10.1016/j.cmet.2016.05.025

 

  1. Zhang Y, Fan K, Liu Y, Liu G, Yang X, Ma J. Cathepsin C Aggravates neuroinflammation involved in disturbances of behaviour and neurochemistry in acute and chronic stress-induced murine model of depression. Neurochem Res. 2018;43(1):89-100. doi: 10.1007/s11064-017-2320-y

 

  1. Tohda C, Tohda M. Extracellular cathepsin L stimulates axonal growth in neurons. BMC Res Notes. 2017;10(1):613. doi: 10.1186/s13104-017-2940-y

 

  1. Saini MG, Bix GJ. Oxygen-glucose deprivation (OGD) and interleukin-1 (IL-1) differentially modulate cathepsin B/L mediated generation of neuroprotective perlecan LG3 by neurons. Brain Res. 2012;1438:65-74. doi: 10.1016/j.brainres.2011.12.027

 

  1. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219

 

  1. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. doi: 10.1002/sim.3034

 

  1. Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. doi: 10.1136/bmj.k601

 

  1. Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73-79.doi: 10.1038/s41586-018-0175-2

 

  1. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880-1906. doi: 10.1002/sim.6835

 

  1. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728-742. doi: 10.1093/ije/dyy258

 

  1. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-525. doi: 10.1093/ije/dyv080

 

  1. Stock AJ, Kasus-Jacobi A, Pereira HA. The role of neutrophil granule proteins in neuroinflammation and Alzheimer’s disease. J Neuroinflammation. 2018;15(1):240. doi: 10.1186/s12974-018-1284-4

 

  1. Kasus-Jacobi A, Washburn JL, Laurence RB, Pereira HA. Selecting multitarget peptides for Alzheimer’s disease. Biomolecules. 2022;12(10):1386. doi: 10.3390/biom12101386

 

  1. Stock AJ, Kasus-Jacobi A, Wren JD, Sjoelund VH, Prestwich GD, Pereira HA. The role of neutrophil proteins on the amyloid beta-RAGE axis. PLoS One. 2016;11(9):e0163330. doi: 10.1371/journal.pone.0163330

 

  1. ‘t Hart BA. A tolerogenic role of cathepsin g in a primate model of multiple sclerosis: Abrogation by epstein-barr virus infection. Arch Immunol Ther Exp (Warsz). 2020;68(4):21. doi: 10.1007/s00005-020-00587-1

 

  1. Marín-Méndez JJ, Patiño-García A, Segura V, Ortuño F, Gálvez MD, Soutullo CA. Differential expression of prostaglandin D2 synthase (PTGDS) in patients with attention deficit-hyperactivity disorder and bipolar disorder. J Affect Disord. 2012;138(3):479-484. doi: 10.1016/j.jad.2012.01.040

 

  1. Wang H, Yin YX, Gong DM, et al. Cathepsin B inhibition ameliorates leukocyte-endothelial adhesion in the BTBR mouse model of autism. CNS Neurosci Ther. 2019;25(4):476-485. doi: 10.1111/cns.13074

 

  1. Sun P, Lin W, Weng Y, et al. Spinal cathepsin S promotes visceral hypersensitivity via FKN/CX3CR1/p38 MAPK signaling pathways. Mol Pain. 2023;19:17448069231179118. doi: 10.1177/17448069231179118
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing