Hepatoprotective, antioxidant, and anti-inflammatory properties of quercetin in paracetamol overdose-induced liver injury in rats

Acute liver injury is a severe clinical condition with potentially fatal consequences commonly caused by viral infections, medications, toxins, and drug overdoses. Among these, paracetamol (acetaminophen) overdose is a leading cause of hepatic failure due to its narrow therapeutic index, resulting in oxidative stress and hepatocyte apoptosis. Quercetin, a flavonoid found abundantly in vegetables and herbs, has demonstrated antioxidant, hepatoprotective, and anti-inflammatory properties. This study evaluates the hepatoprotective role of quercetin in mitigating liver damage induced by paracetamol overdose in an experimental rat model. A total of 28 male rats were randomly divided into four groups (n = 7 per group): (i) normal control (distilled water and saline), (ii) paracetamol-induced liver injury group (2 g/kg paracetamol intraperitoneally), (iii) paracetamol + quercetin group (50 mg/kg quercetin orally and 2 g/kg paracetamol intraperitoneally), and (iv) quercetin-only group (50 mg/kg quercetin intraperitoneally). Blood and liver samples were analyzed for liver enzymes (glutamate pyruvate transaminase [GPT], glutamate oxaloacetate transaminase [GOT]), inflammatory markers (nuclear factor kappa B [NF-κB], tumor necrosis factor-alpha [TNF-α]), apoptotic markers (cysteine-aspartic acid protease 3 [Caspase-3], B-cell lymphoma 2 [BCL2]), oxidative stress markers (malondialdehyde [MDA], glutathione [GSH]), and histological changes. Paracetamol administration significantly elevated GPT, GOT, NF-κB, TNF-α, caspase-3, and MDA levels whereas reducing BCL2 and GSH levels, indicating hepatic injury and oxidative stress. In contrast, results showed that quercetin treatment significantly mitigated these changes, demonstrating its potential hepatoprotective effects. Histological analysis further confirmed that quercetin reduced hepatic damage compared to the paracetamol-only group. These findings suggest that quercetin exerts a protective effect against paracetamol-induced liver injury by reducing oxidative stress, inflammation, and apoptosis.

- Chalasani NP, Maddur H, Russo MW, Wong RJ, Reddy KR, Practice Parameters Committee of the American College of Gastroenterology. ACG clinical guideline: Diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol. 2021;116(5):878-898. doi: 10.14309/ajg.0000000000001121
- Singh D, Cho WC, Upadhyay G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front Physiol. 2016;6:363. doi: 10.3389/fphys.2015.00363
- Zakaria ZA, Kamisan FH, Kek TL, Salleh MZ. Hepatoprotective and antioxidant activities of Dicranopteris linearis leaf extract against paracetamol-induced liver intoxication in rats. Pharm Biol. 2020;58(1):478-489. doi: 10.1080/13880209.2020.1764058
- Wang X, Wu Q, Liu A, et al. Paracetamol: Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab Rev. 2017;49(4):395-437. doi: 10.1080/03602532.2017.1354014
- Ahmed HM, Shehata HH, Mohamed GS, Abo-Gabal HH, El-Daly SM. Paracetamol overdose induces acute liver injury accompanied by oxidative stress and inflammation. Egypt J Chem. 2023;66(3):399-408. doi: 10.21608/ejchem.2022.134110.5474
- Caparrotta TM, Antoine DJ, Dear JW. Are some people at increased risk of paracetamol-induced liver injury? A critical review of the literature. Eur J Clin Pharmacol. 2018;74(2):147-160. doi: 10.1007/s00228-017-2356-6
- Rotundo L, Pyrsopoulos N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J Hepatol. 2020;12(4):125-136. doi: 10.4254/wjh.v12.i4.125
- Li J, Chiew AL, Isbister GK, Duffull SB. Sulfate conjugation may be the key to hepatotoxicity in paracetamol overdose. Br J Clin Pharmacol. 2021;87(5):2392-2396. doi: 10.1111/bcp.14642
- Fujino C, Sanoh S, Katsura T. Variation in expression of cytochrome P450 3A isoforms and toxicological effects: Endo- and exogenous substances as regulatory factors and substrates. Biol Pharm Bull. 2021;44(11):1617-1634. doi: 10.1248/bpb.b21-00332
- Lewis PS. The Relevance of MicroRNAs and Circadian Rhythms in Drug Safety. University of Liverpool. [Doctoral Dissertation]; 2012.
- Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez- González I, et al. Review of natural products with hepatoprotective effects. World J Gastroenterol. 2014;20(40):14787-14804. doi: 10.3748/wjg.v20.i40.14787
- Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. doi: 10.3390/molecules25225243
- Da Silva Pereira Saccol R, Da Silveira KL, Manzoni AG, et al. Antioxidant, hepatoprotective, genoprotective, and cytoprotective effects of quercetin in a murine model of arthritis. Drug Chem Toxicol. 2020;43(5):504-511. doi: 10.1080/01480545.2019.1619095
- Hawas UW, El-Ansari MA, Osman AF, Galal AF, Abou El-Kassem LT. Flavonoid constituents and protective efficacy of Citrus reticulate (Blanco) leaves ethanolic extract on thioacetamide-induced liver injury rats. Biomarkers. 2023;28(2):160-167. doi: 10.1080/1354750X.2022.2151645
- Pingili RB, Vemulapalli S, Narra UB, Potluri SV, Kilaru NB. Diosmin attenuates paracetamol-induced hepato- and nephrotoxicity via inhibition of CYP2E1-mediated metabolism in rats. J Appl Pharm Sci. 2023;13(12):96-104. doi: 10.7324/JAPS.2023.131212
- Irwin MR, Curay CM, Choi S, Kiyatkin EA. Basic physiological effects of ketamine-xylazine mixture as a general anesthetic preparation for rodent surgeries. Brain Res. 2023;1804:148251. doi: 10.1016/j.brainres.2023.148251
- Ayoub SS. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature (Austin). 2021;8(4):351-371. doi: 10.1080/23328940.2021.1886392
- Offor SJ, Amadi CN, Chijioke-Nwauche I, Manautou JE, Orisakwe OE. Potential deleterious effects of paracetamol dose regime used in Nigeria versus that of the United States of America. Toxicol Rep. 2022;9:1035-1044. doi: 10.1016/j.toxrep.2022.04.025
- David AVA, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-89. doi: 10.4103/0973-7847.194044
- Dajas F. Life or death: Neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143(2):383-396. doi: 10.1016/j.jep.2012.07.005
- Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. Plant Physiol Biochem. 2021;166:10-19. doi: 10.1016/j.plaphy.2021.05.023
- Elumalai P, Lakshmi S. Role of quercetin benefits in neurodegeneration. Adv Neurobiol. 2016;12:229-245. doi: 10.1007/978-3-319-28383-8_12
- Ezzati M, Yousefi B, Velaei K, Safa A. A review on anti-cancer properties of quercetin in breast cancer. Life Sci. 2020;248:117463. doi: 10.1016/j.lfs.2020.117463
- Bouhali IE, Tayaa H, Tahraoui A. Quercetin, a natural flavonoid, mitigates fenthion induced locomotor impairments and brain acetylcholinesterase inhibition in male Wistar rat. Middle East J Sci Res. 2015;23(1):55-58. doi: 10.5829/idosi.mejsr.2015.23.01.9220
- El Faras AA, Elsawaf AL. Hepatoprotective activity of quercetin against paracetamol-induced liver toxicity in rats. Tanta Med J. 2017;45(2):92-98. doi: 10.4103/tmj.tmj_43_16
- Anusha CS, Sini H, Prakashkumar B, Nevin KG. Mechanism of protection of rat hepatocytes from acetaminophen-induced cellular damage by ethanol extract of Aerva lanata. Interdiscip Toxicol. 2019;12(4):169-179. doi: 10.2478/intox-2019-0021
- Su JF, Guo CJ, Wei JY, Yang JJ, Jiang YG, Li AYF. Protection against hepatic ischemia-reperfusion injury in rats by oral pretreatment with quercetin. Biomed Environ Sci. 2003;16(1):1-8.
- Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear factor kappa B signaling complexes in acute inflammation. Antioxid Redox Signal. 2020;33(3):145-165. doi: 10.1089/ars.2019.7975
- Tieppo J, Cuevas MJ, Vercelino R, Tuñón MJ, Marroni NP, González-Gallego J. Quercetin administration ameliorates pulmonary complications of cirrhosis in rats. J Nutr. 2009;139(7):1339-1346. doi: 10.3945/jn.109.105353
- Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol. 2014;20(36):12908-12933. doi: 10.3748/wjg.v20.i36.12908
- Peng Z, Gong X, Yang Y, et al. Hepatoprotective effect of quercetin against LPS/d-GalN induced acute liver injury in mice by inhibiting the IKK/NF-κB and MAPK signal pathways. Int Immunopharmacol. 2017;52:281-289. doi: 10.1016/j.intimp.2017.09.022
- El-Bakry HA, El-Sherif G, Rostom RM. Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomed Pharmacother. 2017;96:798-811. doi: 10.1016/j.biopha.2017.10.055
- Soliman MM, Gaber A, Alsanie WF, et al. Gibberellic acid-induced hepatorenal dysfunction and oxidative stress: Mitigation by quercetin through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. J Food Biochem. 2022;46(2):e14069. doi: 10.1111/jfbc.14069
- Liu X, Zhang Y, Liu L, et al. Protective and therapeutic effects of nanoliposomal quercetin on acute liver injury in rats. BMC Pharmacol Toxicol. 2020;21(1):11. doi: 10.1186/s40360-020-0388-5
- Ashkani-Esfahani S, Bagheri F, Azarpira N, et al. Protective effects of quercetin on thioacetamide-induced acute liver damage and its related biochemical and pathological alterations. Egypt J Intern Med. 2016;28:123-127. doi: 10.4103/1110-7782.200965