Mechanisms of resistance to FGFR inhibitors in the treatment of advanced cholangiocarcinoma with FGFR mutations: A literature review

Advanced cholangiocarcinoma harbors various genetic alterations, one of the most common being fibroblast growth factor receptor (FGFR) fusions. Although FGFR inhibitors have a good response rate, their median progression-free survival is about 6 – 9 months in most trials. The present manuscript is a non-systematic review that explores the mechanisms of resistance and the possible strategies to overcome this rapid resistance. From the findings, resistance to FGFR inhibition can be classified into either primary or secondary resistance. Primary resistance is less common, explained mostly by the presence of co-mutations. In contrast, secondary resistance mechanisms are similar to other tyrosine kinase inhibitors: On-target mutations alter the binding site of the FGFR protein (gatekeeper resistance); off-target mechanisms are multifactorial and involve the activation of related intracellular pathways and the loss of differentiation, leading to a mesenchymal phenotype. Various strategies are in development in order to maintain the efficacy of targeted therapy for patients by overcoming FGFR inhibition resistance, including the coinhibition of the related pathway, the use of pan-FGFR inhibitors, and the development of covalent or dual FGFR inhibitors.
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
- Chmiel P, Gęca K, Rawicz-Pruszyński K, Polkowski WP, Skórzewska M. FGFR inhibitors in cholangiocarcinoma-a novel yet primary approach: Where do we stand now and where to head next in targeting this axis? Cells. 2022;11(23):3929. doi: 10.3390/cells11233929
- DiPeri TP, Javle MM, Meric-Bernstam F. Next generation sequencing for biliary tract cancers. Expert Rev Gastroenterol Hepatol. 2021;15(5):471-474. doi: 10.1080/17474124.2021.1896967
- Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: Potential targets for intervention. Clin Cancer Res. 2018;24(17):4154-4161. doi: 10.1158/1078-0432.ccr-18-0078
- Schmidt MA, Roberts LR. Chapter five understanding the genetic basis for cholangiocarcinoma. In: Sirica AE, Fisher PB, editors. Advances in Cancer Research. Hepatobiliary Cancers: Translational Advances and Molecular Medicine. Vol. 156. United States: Academic Press; 2022. p. 137-165. doi: 10.1016/bs.acr.2022.03.004
- Wang J, Xing X, Li Q, et al. Targeting the FGFR signaling pathway in cholangiocarcinoma: Promise or delusion? Ther Adv Med Oncol. 2020;12:1758835920940948. doi: 10.1177/1758835920940948
- Lin B, He Q, Lu Y, Zhang W, Jin J, Pan H. Viral hepatitis increases the risk of cholangiocarcinoma: A systematic review and meta-analysis. Transl Cancer Res. 2023;12(6):1602-1616. doi: 10.21037%2Ftcr-23-892
- Espinoza JL. Fluke-related cholangiocarcinoma: Challenges and opportunities. Pathogens. 2023;12(12):1429. doi: 10.3390/pathogens12121429
- Bridgewater J, Fletcher P, Palmer DH, et al. Long-term outcomes and exploratory analyses of the randomized phase III BILCAP study. J Clin Oncol. 2022;40(18):2048-2057. doi: 10.1200/JCO.21.02568
- Nakachi K, Ikeda M, Konishi M, et al. Adjuvant S-1 compared with observation in resected biliary tract cancer (JCOG1202, ASCOT): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet. 2023;401(10372):195-203. doi: 10.1016/S0140-6736(22)02038-4
- Turgeon MK, Maithel SK. Cholangiocarcinoma: A site-specific update on the current state of surgical management and multi-modality therapy. Chin Clin Oncol. 2020;9(1):4. doi: 10.21037%2Fcco.2019.08.09
- Choi WJ, Williams PJ, Claasen MPAW, et al. Systematic review and meta-analysis of prognostic factors for early recurrence in intrahepatic cholangiocarcinoma after curative-intent resection. Ann Surg Oncol. 2022;29(7):4337-4353. doi: 10.1245/s10434-022-11463-x
- Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273-1281. doi: 10.1056/NEJMoa0908721
- Oh DY, Ruth He A, Qin S, et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid. 2022;1(8):EVIDoa2200015. doi: 10.1056/EVIDoa2200015
- Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): A phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021;22(5):690-701. doi: 10.1016/s1470-2045(21)00027-9
- Yoo C, Kim KP, Jeong JH, et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): A multicentre, open-label, randomised, phase 2b study. Lancet Oncol. 2021;22(11):1560-1572. doi: 10.1016/S1470-2045(21)00486-1
- Stenzinger A, Vogel A, Lehmann U, et al. Molecular profiling in cholangiocarcinoma: A practical guide to next-generation sequencing. Cancer Treat Rev. 2024;122:102649. doi: 10.1016/j.ctrv.2023.102649
- O’Rourke CJ, Munoz-Garrido P, Andersen JB. Molecular targets in cholangiocarcinoma. Hepatology. 2021;73(S1):62-74. doi: 10.1002/hep.31278
- Tella SH, Kommalapati A, Borad MJ, Mahipal A. Second-line therapies in advanced biliary tract cancers. Lancet Oncol. 2020;21(1):e29-e41. doi: 10.1016/S1470-2045(19)30733-8
- Javle MM, Roychowdhury S, Kelley RK, et al. Final results from a phase II study of infigratinib (BGJ398), an FGFR-selective tyrosine kinase inhibitor, in patients with previously treated advanced cholangiocarcinoma harboring an FGFR2 gene fusion or rearrangement. J Clin Oncol. 2021;39(3 Suppl):265. doi: 10.1200/JCO.2021.39.3-suppl.265
- Abou-Alfa GK, Borbath I, Roychowdhury S, et al. PROOF 301: Results of an early discontinued randomized phase 3 trial of the oral FGFR inhibitor infigratinib vs. gemcitabine plus cisplatin in patients with advanced cholangiocarcinoma (CCA) with an FGFR2 gene fusion/rearrangement. J Clin Oncol. 2024;42(3 Suppl):516. doi: 10.1200/JCO.2024.42.3-suppl.516
- Borad MJ, Bridgewater JA, Morizane C, et al. A phase III study of futibatinib (TAS-120) versus gemcitabine-cisplatin (gem-cis) chemotherapy as first-line (1L) treatment for patients (pts) with advanced (adv) cholangiocarcinoma (CCA) harboring fibroblast growth factor receptor 2 (FGFR2) gene rearrangements (FOENIX-CCA3). J Clin Oncol. 2020;38(4 Suppl):TPS600. doi: 10.1200/JCO.2020.38.4-suppl.TPS600
- Bekaii-Saab TS, Valle JW, Van Cutsem E, et al. FIGHT-302: First-line pemigatinib VS gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol l. 2020;16(30):2385-2399. doi: 0.2217/fon-2020-0429
- Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer. 2020;11(8):2000-2007. doi: 10.7150%2Fjca.40531
- Gile JJ, Wookey V, Zemla TJ, et al. Outcomes following FGFR inhibitor therapy in patients with cholangiocarcinoma. Target Oncol. 2022;17(5):529-538. doi: 10.1007/s11523-022-00914-w
- Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671-684. doi: 10.1016/S1470-2045(20)30109-1
- Javle MM, Abou-Alfa GK, Macarulla T, et al. Efficacy of derazantinib in intrahepatic cholangiocarcinoma patients with FGFR2 mutations or amplifications: Interim results from the phase 2 study FIDES-01. J Clin Oncol. 2022;40(4-suppl):427. doi: 10.1200/JCO.2022.40.4-suppl.427
- Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol. 2021;6(10):803-815. doi: 10.1016/S2468-1253(21)00196-5
- Xu J, Xiong J, Gu S, et al. A phase 2 study of HMPL-453, a selective FGFR tyrosine kinase inhibitor (TKI), in patients with previously treated advanced cholangiocarcinoma containing FGFR2 fusions. J Clin Oncol. 2023;41(16 Suppl):e16118. doi: 10.1200/JCO.2023.41.16-suppl.e16118
- Guo Y, Yuan C, Ding W, et al. Gunagratinib, a highly selective irreversible FGFR inhibitor, in patients with previously treated locally advanced or metastatic cholangiocarcinoma harboring FGFR pathway alterations: A phase IIa dose-expansion study. J Clin Oncol. 2023;41(4 Suppl):572. doi: 10.1200/JCO.2023.41.4-suppl.572
- Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N Engl J Med. 2023;388(3):228-239. doi: 10.1056/NEJMoa2206834
- Pant S, Schuler MH, Iyer G, et al. Efficacy and safety of erdafitinib in adults with cholangiocarcinoma (CCA) with prespecified fibroblast growth factor receptor alterations (FGFRalt) in the phase 2 open-label, single-arm RAGNAR trial: Expansion cohort results. J Clin Oncol. 2023;41(4 Suppl):610. doi: 10.1200/JCO.2023.41.4-suppl.610
- Furuse J, Jiang B, Kuwahara T, et al. Pivotal single-arm, phase 2 trial of tasurgratinib for patients with fibroblast growth factor receptor (FGFR)-2 gene fusion-positive cholangiocarcinoma (CCA). J Clin Oncol. 2024;42(3 Suppl):471. doi: 10.1200/JCO.2024.42.3-suppl.471
- Mahipal A, Tella SH, Kommalapati A, Anaya D, Kim R. FGFR2 genomic aberrations: Achilles heel in the management of advanced cholangiocarcinoma. Cancer Treat Rev. 2019;78:1-7. doi: 10.1016/j.ctrv.2019.06.003
- Junior PLS, Borad MJ. Targeting fibroblast growth factor receptor pathway: Precision medicine for biliary cancer and beyond. Semin Liver Dis. 2023;43:218-225. doi: 10.1055/a-2049-3149
- Kendre G, Marhenke S, Lorz G, et al. The co-mutational spectrum determines the therapeutic response in murine FGFR2 fusion-driven cholangiocarcinoma. Hepatology. 2021;74(3):1357-1370. doi: 10.1002/hep.31799
- Bibeau K, Féliz L, Lihou CF, Ren H, Abou-Alfa GK. Progression-free survival in patients with cholangiocarcinoma with or without FGF/FGFR alterations: A FIGHT-202 post hoc analysis of prior systemic therapy response. JCO Precis Oncol. 2022;6:e2100414. doi: 10.1200/po.21.00414
- Silverman IM, Hollebecque A, Friboulet L, et al. Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib. Cancer Discov. 2021;11(2):326-339. doi: 10.1158/2159-8290.CD-20-0766
- Pearson A, Smyth E, Babina IS, et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 2016;6(8):838-851. doi: 10.1158/2159-8290.CD-15-1246
- Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Fibroblast growth factor receptors (FGFRs): Structures and small molecule inhibitors. Cells. 2019;8(6):614. doi: 10.3390/cells8060614
- Yue S, Li Y, Chen X, et al. FGFR-TKI resistance in cancer: Current status and perspectives. J Hematol Oncol. 2021;14(1):23. doi: 10.1186/s13045-021-01040-2
- Varghese AM, Patel J, Janjigian YY, et al. Noninvasive detection of polyclonal acquired resistance to FGFR inhibition in patients with cholangiocarcinoma harboring FGFR2 alterations. JCO Precis Oncol. 2021;(5):PO.20.00178. doi: 10.1200/PO.20.00178
- Abdel-Magid AF. Second-generation FGFR inhibitors for the treatment of cancers harboring mutated FGFRs. ACS Med Chem Lett. 2019;10(10):1374-1375. doi: 10.1021/acsmedchemlett.9b00427
- Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017;7(3):252-263. doi: 10.1158/2159-8290.CD-16-1000
- Lin Q, Chen X, Qu L, et al. Characterization of the cholangiocarcinoma drug pemigatinib against FGFR gatekeeper mutants. Commun Chem. 2022;5(1):100. doi: 10.1038/s42004-022-00718-z
- Facchinetti F, Hollebecque A, Bahleda R, et al. Facts and new hopes on selective FGFR inhibitors in solid tumors. Clin Cancer Res. 2020;26(4):764-774. doi: 10.1158/1078-0432.ccr-19-2035
- Lau DK, Jenkins L, Weickhardt A. Mechanisms of acquired resistance to fibroblast growth factor receptor targeted therapy. Cancer Drug Resist. 2019;2(3):568-579. doi: 10.20517%2Fcdr.2019.42
- Pettitt GA, Hurst CD, Khan Z, et al. Development of resistance to FGFR inhibition in urothelial carcinoma via multiple pathways in vitro. J Pathol. 2023;259(2):220-232. doi: 10.1002/path.6034
- Herrera-Abreu MT, Pearson A, Campbell J, et al. Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer. Cancer Discov. 2013;3(9):1058-1071. doi: 10.1158/2159-8290.cd-12-0569
- Amadeo E, Rossari F, Vitiello F, et al. Past, present, and future of FGFR inhibitors in cholangiocarcinoma: From biological mechanisms to clinical applications. Expert Rev Clin Pharmacol. 2023;16(7):631-642. doi: 10.1080/17512433.2023.2232302
- Idris R, Chaijaroenkul W, Na-Bangchang K. Molecular targets and signaling pathways in cholangiocarcinoma: A systematic review. Asian Pac J Cancer Prev. 2023;24(3):741-751. doi: 10.31557%2FAPJCP.2023.24.3.741
- Datta J, Damodaran S, Parks H, et al. Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Mol Cancer Ther. 2017;16(4):614-624. doi: 10.1158/1535-7163.mct-15-1010
- Bockorny B, Rusan M, Chen W, et al. RAS-MAPK reactivation facilitates acquired resistance in FGFR1-amplified lung cancer and underlies a rationale for upfront FGFR-MEK blockade. Mol Cancer Ther. 2018;17(7):1526-1539. doi: 10.1158/1535-7163.mct-17-0464
- Sase H, Nakanishi Y, Aida S, et al. Acquired JHDM1D-BRAF fusion confers resistance to FGFR inhibition in FGFR2-amplified gastric cancer. Mol Cancer Ther. 2018;17(10):2217-2225. doi: 10.1158/1535-7163.mct-17-1022
- DiPeri TP, Zhao M, Evans KW, et al. Convergent MAPK pathway alterations mediate acquired resistance to FGFR inhibitors in FGFR2 fusion-positive cholangiocarcinoma. J Hepatol. 2024;80(2):322-334. doi: 10.1016/j.jhep.2023.10.041
- Lau WM, Teng E, Huang KK, et al. Acquired resistance to FGFR inhibitor in diffuse-type gastric cancer through an AKT-independent PKC-mediated phosphorylation of GSK3β. Mol Cancer Ther. 2018;17(1):232-242. doi: 10.1158/1535-7163.mct-17-0367
- Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol. 2023;88:46-66. doi: 10.1016/j.semcancer.2022.12.002
- Grygielewicz P, Dymek B, Bujak A, et al. Epithelial-mesenchymal transition confers resistance to selective FGFR inhibitors in SNU-16 gastric cancer cells. Gastric Cancer. 2016;19(1):53-62. doi: 10.1007%2Fs10120-014-0444-1
- Feng S, Zhou L, Nice EC, Huang C. Fibroblast growth factor receptors: Multifactorial-contributors to tumor initiation and progression. Histol Histopathol. 2014;30:13-31. doi: 10.14670/hh-30.13
- Krook MA, Lenyo A, Wilberding M, et al. Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-fusion cholangiocarcinoma. Mol Cancer Ther. 2020;19(3):847-857. doi: 10.1158/1535-7163.MCT-19-0631
- Palakurthi S, Kuraguchi M, Zacharek SJ, et al. The combined effect of FGFR inhibition and PD-1 blockade promotes tumor-intrinsic induction of antitumor immunity. Cancer Immunol Res. 2019;7(9):1457-1471. doi: 10.1158/2326-6066.CIR-18-0595
- Zhu Z, Dong H, Wu J, et al. Targeted genomic profiling revealed a unique clinical phenotype in intrahepatic cholangiocarcinoma with fibroblast growth factor receptor rearrangement. Transl Oncol. 2021;14(10):101168. doi: 10.1016/j.tranon.2021.101168
- Sridharan V, Neyaz A, Chogule A, et al. FGFR mRNA expression in cholangiocarcinoma and its correlation with FGFR2 fusion status and immune signatures. Clin Cancer Res. 2022;28(24):5431-5439. doi: 10.1158/1078-0432.CCR-22-1244
- Karasic TB, Eads JR, Goyal L. Precision medicine and immunotherapy have arrived for cholangiocarcinoma: An overview of recent approvals and ongoing clinical trials. JCO Precis Oncol. 2023;7:e2200573. doi: 10.1200%2FPO.22.00573
- Chen X, Li H, Lin Q, et al. Structure-based design of a dual-warhead covalent inhibitor of FGFR4. Commun Chem. 2022;5(1):36. doi: 10.1038/s42004-022-00657-9
- Liang Q, Wang J, Zhao L, Hou J, Hu Y, Shi J. Recent advances of dual FGFR inhibitors as a novel therapy for cancer. Eur J Med Chem. 2021;214:113205. doi: 10.1016/j.ejmech.2021.113205
- Philip PA, Mahoney MR, Allmer C, et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol. 2006;24(19):3069-3074. doi: 10.1200/JCO.2005.05.3579
- El-Khoueiry AB, Rankin C, Siegel AB, et al. S0941: A phase 2 SWOG study of sorafenib and erlotinib in patients with advanced gallbladder carcinoma or cholangiocarcinoma. Br J Cancer. 2014;110(4):882-887. doi: 10.1038/bjc.2013.801
- Lee J, Park SH, Chang HM, et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012;13(2):181-188. doi: 10.1016/S1470-2045(11)70301-1
- Wu Q, Zhen Y, Shi L, et al. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2022;12(5):1378-1395. doi: 10.1158/2159-8290.CD-21-1168
- Balasubramanian B, Yacqub-Usman K, Venkatraman S, et al. Targeting FGFRs using PD173074 as a novel therapeutic strategy in cholangiocarcinoma. Cancers (Basel). 2023;15(9):2528. doi: 10.3390/cancers15092528
- Cristinziano G, Porru M, Lamberti D, et al. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma. J Hepatol. 2021;75(2):351-362. doi: 10.1016/j.jhep.2021.02.032
- Rodon J, O’Neil B, Wacheck V, Liu M, Rosen LS. 1198TiP a phase Ib/II open-label, nonrandomized study of FGFR inhibitor futibatinib in combination with MEK inhibitor binimetinib in patients with advanced KRAS-mutant cancer. Ann Oncol. 2022;33:S1096. doi: 10.1016/j.annonc.2022.07.1874
- Koyama T, Shimizu T, Iwasa S, et al. First‐in‐human phase I study of E7090, a novel selective fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. Cancer Sci. 2020;111(2):571-579. doi: 10.1111%2Fcas.14265
- Balasooriya ER, Wu Q, Ellis H, et al. The irreversible FGFR inhibitor KIN-3248 overcomes FGFR2 kinase domain mutations. Clin Cancer Res. 2024;30(10):2181-2192. doi: 10.1158/1078-0432.CCR-23-3588
- Wu D, Guo M, Min X, et al. LY2874455 potently inhibits FGFR gatekeeper mutants and overcomes mutation-based resistance. Chem Commun (Camb). 2018;54(85):12089-12092. doi: 10.1039/c8cc07546h
- Dehghanian F, Alavi S. Molecular mechanisms of the anti-cancer drug, LY2874455, in overcoming the FGFR4 mutation-based resistance. Sci Rep. 2021;11(1):16593. doi: 10.1038/s41598-021-96159-0
- Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov. 2019;9(8):1064-1079. doi: 10.1158/2159-8290.CD-19-0182
- Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem. 2025. doi: 10.1039/D4MD00881B