Application of Clustered Regularly Interspaced Short Palindromic Repeat—Cas12a System in Cancer Research and its Structural Basis

The clustered regularly interspaced short palindromic repeat-Cas12a (CRISPR-Cas12a) system is a new type of CRISPR-Cas system. As a unitary effector protein in this system, Cas12a recognizes 5’-TTTN-3’ protospacer-adjacent motif and exhibits cleavage activity of double-stranded deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), supplementing the toolbox of CRISPR system. Compared to CRISPR-Cas9 system, CRISPR-Cas12a system has the advantage of high specificity, which is a promising tool for genetic manipulation in the basic cancer research and clinical cancer therapy. To date, three Cas12a proteins including Acidaminococcus sp. Cas12a (AsCas12a), Francisella novicida Cas12a (FnCas12a), and Lachnospiraceae bacterium Cas12a (LpCas12a) have been applied in transcriptional regulation or genome editing through CRISPR RNAs complementary to target DNA or RNA in cancer cells or immune cells. This review summarizes the latest applications of CRISPR-Cas12a system in cancer research and its structural basis.
Li Y, Li S, Wang J, et al., 2019, CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol, 37:730–43. DOI: 10.1016/j.tibtech.2018.12.005.
Murugan K, Babu K, Sundaresan R, et al., 2017, The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Molecular Cell, 68:15–25. DOI: 10.1016/j.molcel.2017.09.007.
Makarova KS, Zhang F, Koonin EV, 2017, SnapShot: Class 2 CRISPR-Cas Systems. Cell, 168:328.e321. DOI: 10.1016/j.cell.2016.12.038.
Zetsche B, Gootenberg JS, Abudayyeh OO, et al., 2015, Cpf1 is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163:759–71. DOI: 10.1016/j.cell.2015.09.038.
Zhu DK, Yang XQ, He Y, et al., 2016, Comparative Genomic Analysis Identifies Structural Features of CRISPR-Cas Systems in Riemerella anatipestifer. BMC Genomics, 17:689. DOI: 10.1186/s12864-016-3040-4.
Tu M, Lin L, Cheng Y, et al., 2017, A “New Lease of Life”: FnCpf1 Possesses DNA Cleavage Activity for Genome Editing in Human Cells. Nucleic Acids Res, 45:11295-304. DOI: 10.1093/nar/gkx783.
Dong D, Ren K, Qiu X, et al., 2016, The Crystal Structure of Cpf1 in Complex with CRISPR RNA. Nature, 532:522–6. DOI: 10.1038/nature17944.
Gao P, Yang H, Rajashankar KR, et al., 2016, Type V CRISPR-Cas Cpf1 Endonuclease Employs a Unique Mechanism for crRNA-Mediated Target DNA Recognition. Cell Res, 26:901–13. DOI: 10.1038/cr.2016.88.
Toth E, Weinhardt N, Bencsura P, et al., 2016, Cpf1 Nucleases Demonstrate Robust Activity to Induce DNA Modification by Exploiting Homology Directed Repair Pathways in Mammalian Cells. Biol Direct, 11:46. DOI: 10.1186/s13062-016-0147-0.
Zhong G, Wang H, Li Y, et al., 2017, Cpf1 Proteins Excise CRISPR RNAs from mRNA Transcripts in Mammalian Cells. Nat Chem Biol, 13:839–41. DOI: 10.1038/nchembio.2410.
Stella S, Alcon P, Montoya G, 2017, Structure of the Cpf1 Endonuclease R-loop Complex after Target DNA Cleavage. Nature, 546:559–63. DOI: 10.1038/nature22398.
Yang M, Wei H, Wang Y, et al., 2017, Targeted Disruption of V600E-Mutant BRAF Gene by CRISPR-Cpf1. Mol Ther Nucleic Acids, 8:450–8. DOI: 10.1016/j.omtn.2017.05.009.
Fonfara I, Richter H, Bratovic M, et al., 2016, The CRISPR-Associated DNA-Cleaving Enzyme Cpf1 also Processes Precursor CRISPR RNA. Nature, 532:517–21. DOI: 10.1038/nature17945.
Zetsche B, Heidenreich M, Mohanraju P, et al., 2017, Multiplex Gene Editing by CRISPR-Cpf1 Using a Single crRNA Array. Nat Biotechnol, 35:31–4. DOI: 10.1038/nbt.3737.
Chow RD, Kim HR, Chen S, 2018, Programmable Sequential Mutagenesis by Inducible Cpf1 crRNA Array Inversion. Nat Commun, 9:1903. DOI: 10.1038/s41467-018-04158-z.
Kleinstiver BP, Tsai SQ, Prew MS, et al., 2016, Genome-Wide Specificities of CRISPR-Cas Cpf1 Nucleases in Human Cells. Nat Biotechnol, 34:869–74. DOI: 10.1038/nbt.3620.
Nishimasu H, Ran FA, Hsu PD, et al., 2014, Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell, 156:935–49. DOI: 10.1016/j.cell.2014.02.001.
Lei C, Li SY, Liu JK, et al., 2017, The CCTL (Cpf1-Assisted Cutting and Taq DNA Ligase-Assisted Ligation) Method for Efficient Editing of Large DNA Constructs in vitro. Nucleic Acids Res, 45:e74. DOI: 10.1093/nar/gkx018.
Nishimasu H, Nureki O, 2017, Structures and Mechanisms of CRISPR RNA-Guided Effector Nucleases. Curr Opin Struct Biol, 43:68–78. DOI: 10.1016/j.sbi.2016.11.013.
Yamano T, Nishimasu H, Zetsche B, et al., 2016, Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 165:949-62. DOI: 10.1016/j.cell.2016.04.003.
Liu Y, Han J, Chen Z, et al., 2017, Engineering Cell Signaling Using Tunable CRISPR-Cpf1-Based Transcription Factors. Nat Commun, 8:2095. DOI: 10.1038/s41467-017-02265-x.
Gao L, Cox DB, Yan WX, et al., 2017, Engineered Cpf1 Variants with Altered PAM Specificities. Nat Biotechnol, 35:789–92. DOI: 10.1038/nbt.3900.
Li B, Zhao W, Luo X, et al., 2017, Engineering CRISPR-Cpf1 crRNAs and mRNAs to Maximize Genome Editing Efficiency. Nat Biomed Eng, 1. pii: 0066. DOI: 10.1038/s41551-017-0066.
Kleinstiver BP, Sousa AA, Walton RT, et al., 2019, Engineered CRISPR-Cas12a Variants with Increased Activities and Improved Targeting Ranges for Gene, Epigenetic and Base Editing. Nat Biotechnol, 37:276–82. DOI: 10.1038/s41587-018-0011-0.
Yan WX, Mirzazadeh R, Garnerone S, et al., 2017, BLISS is a Versatile and Quantitative Method for Genome-Wide Profiling of DNA Double-Strand Breaks. Nat Commun, 8:15058. DOI: 10.1038/ncomms15058.
Chen JS, Ma E, Harrington LB, et al., 2018, CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science (New York, N.Y.), 360:436–9. DOI: 10.1126/science.aar6245.
Schmidt F, Grimm D, 2015, CRISPR Genome Engineering and Viral Gene Delivery: A Case of Mutual Attraction. Biotechnol J, 10:258–72. DOI: 10.1002/biot.201400529.
Tsukamoto T, Sakai E, Iizuka S, et al., 2018, Generation of the Adenovirus Vector-Mediated CRISPR/Cpf1 System and the Application for Primary Human Hepatocytes Prepared from Humanized Mice with Chimeric Liver. Biol Pharm Bull, 41:1089–95. DOI: 10.1248/bpb.b18-00222.
Dai X, Park JJ, Du Y, et al., 2019, One-Step Generation of Modular CAR-T Cells with AAV-Cpf1. Nat Methods, 16:247–54. DOI: 10.1038/s41592-019-0329-7.
Wang M, Mao Y, Lu Y, et al., 2017, Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Molecular Plant, 10:1011–3. DOI: 10.1016/j.molp.2017.03.001.
Zhang Y, Long C, Li H, et al., 2017, CRISPR-Cpf1 Correction of Muscular Dystrophy Mutations in Human Cardiomyocytes and Mice. Sci Adv, 3:e1602814. DOI: 10.1126/sciadv.1602814.
Kim D, Kim J, Hur JK, et al., 2016, Genome-Wide Analysis Reveals Specificities of Cpf1 Endonucleases in Human Cells. Nat Biotechnol, 34:863–8. DOI: 10.1038/nbt.3609.
Hur JK, Kim K, Been KW, et al., 2016, Targeted Mutagenesis in Mice by Electroporation of Cpf1 Ribonucleoproteins. Nat Biotechnol, 34:807–8. DOI: 10.1038/nbt.3596.